2-1-22-TTS vTTS: visual-text to speech

Yoshifumi Nakano¹, Takaaki Saeki¹, **Shinnosuke Takamichi**¹, Katsuhito Sudoh², Hiroshi Saruwatari¹ (1: The University of Tokyo, Japan. 2: Nara Institute of Science and Technology, Japan.)

Summary: synthesizing speech not from text (discrete symbols) but from visual text (text as an image)

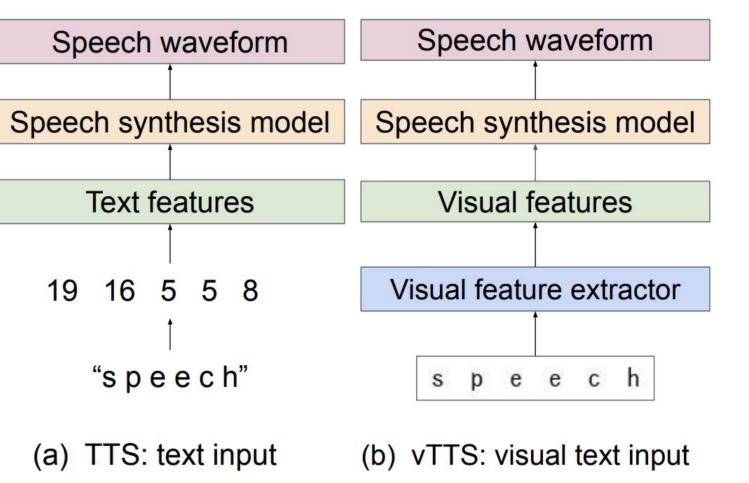
• Text is not a sequence of discrete symbols.

- Phonogram (e.g., Hangul)
 - A character representing a speech sound
 - Combination of sub-characters determines the reading
- Emphasized word (e.g., <u>underlined</u> and **bold**) [1]
 - We read it emphatically.
- Typefaces (e.g., in poster and comics) [2]
 - Utilizes to convey desired emotions to readers.
- Text is an image! -> visual text (text as an image)
- Visual-text to speech (vTTS): a new task of speech synthesis
 - Maps visual-text to speech.
 - We present an end-to-end mapping method.

• Experiments

- Basic TTS (text to speech) vs. our vTTS
- Transferring attributes in visual-text to speech
- Robustness to OOV (out of vocabulary) characters

Methodology: end-to-end mapping from visual text to speech features



What visual texts do

Compositionality

강 (kang) = ¬ (k) + ŀ (a) + 으 (ng)

• Emphasis attribute

おんせい	おんせい	おんせい
Underline	Bold	Italic

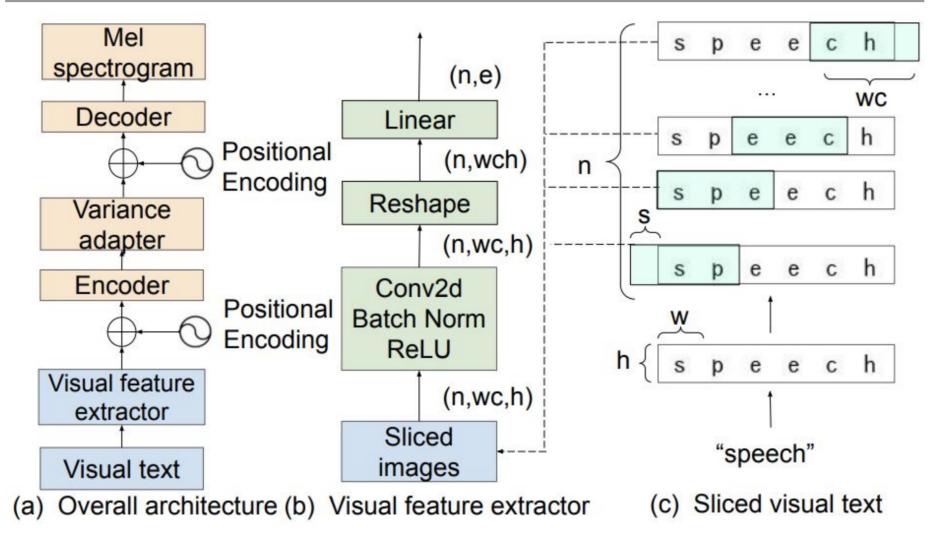
• Emotion attribute

おんせい おんせい

Aiharahudemozikaisyo (sad) Koruri (joy)

- Visual-text conveys linguistic and para-linguistic information.
- Smallest units in speech synthesis • **Pixel (ours)** < byte [3] < phoneme < character < subword

vTTS model architecture



- Visual text
 - Artificially generated from text
 - Not realistic but good for benchmark
 - Monospace font
- Visual feature extractor
 - Extract visual features from visual text
- FastSpeech 2 [4] encoder/decoder
 - Non-autoregressive model

Experimental evaluation

Speech (Ja)

Ground truth

Underline

No effect

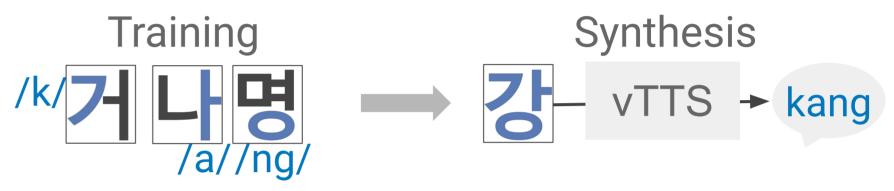
Bold

Italic

What the visual-feature extractor does

• Compositionality of sub-characters

- In phonetic languages (e.g., Korean), combination of sub-characters determines the overall reading.
- Even if OOV characters emerge, vTTS can predict the readings using the visual features.



• Emphasis and emotion attributes

The extractor will extract emphasis and typefaces. \bigcirc

Experimental setup

Language	 Japanese (Hiragana) Korean (Hangul) English (Roman Alphabet)
Dataset	 8.3 hours from JSUT (Japanese) [5] + word-emphasized speech from JECS + happy and sad speech from manga2voice [6] 9.0 hours from KSS (Korean) [7] 19 hours from LJSpeech (English) [8]
Model	 Character-input FastSpeech2 [5] (TTS) Visual text-input model (vTTS) (All the models are mono-lingual.)

TTS vs. vTTS: comparison of naturalness

- 5-point mean opinion score (MOS) on naturalness
 - Language-wise evaluation \bigcirc

La ng.	TTS	window c=1 speech	vTTS c=3 s p e e c h	c=5 speech
Ja	3.45 ± 0.09	3.41 ± 0.09	3.46 ± 0.09	3.49 ± 0.10
Ko	3.04 ± 0.16	3.55 ± 0.15	3.18 ± 0.15	3.01 ± 0.15
En	272 ± 0.10	2.60 ± 0.10	2.70 ± 0.11	2.71 ± 0.10

Transferring emphasis

- "Which word is emphasized?"
 - Listener listens to synthetic speech and answer the emphasized word.
 - Emphasis is accurately transferred.

rans	terring	emo	tion

- "Which emotion is perceived?"
 - Listener listens to synthetic speech and answer the perceived emotion.
 - Emotion is accurately transferred.

	Accuracy	Confusion	Lloppy	Cod	
	0.933	Confusion matrix (Ja)	Happy (perceived)	Sad (perceived)	
Attention is all	0.933	Happy (true)			
Attention is all	0.898	おんせい	0.795	0.205	
Attention is all	0.877	Sad (true)	0 1 1 /	0.006	
Attention is all	0.381 ~ 0.505	おんせい	0.114	0.886	

Robustness to OOV character

- Three test sets
 - "in-vocab" consists of characters appearing more than 3 times in training data.
 - "rare" includes appearing less than 3 times in the training data.
 - "**OOV**" includes **OOV** characters.

• Evaluation (Korean speech only)

- 5-point MOS on naturalness by native speakers
- Character error rate (CER) of transcription by native speakers vTTS is more robust to OOV (= degradation by OOV is small) than TTS.

• TTS vs. vTTS

- Comparable in Ja and En (no significant difference) • vTTS is better in Ko (significant difference)
- Effect of window size c
 - Naturalness improves as c increases in Ja and En.
 - \circ c = 1 is the best in Ko (due to the number of phonemes) expressed by one character?)

MOS (Δ : decrease from "in-vocab.")

CER (Δ : decrease from "in-vocab.")

	in-vocab	rare (Δ)	00V (Δ)		in-vocab	rare (Δ)	00V (Δ)
TTS	3.29 ± 0.16	2.32 ± 0.16 (-0.97)	2.31 ± 0.20 (-0.98)	TTS	0.120	0.194 (+0.074)	0.255 (+0.135)
vTTS	3.58 ± 0.13	3.12 ± 0.16 (-0.46)	2.95 ± 0.21 (-0.63)	vTTS	0.080	0.114 (+0.034)	0.163 (+0.083)

Future direction

• vTTS from real image, e.g., posters, comics (manga), and other in-the-wild images.

Saruwatari-Kovama Lab The L	Jniversity of Tokyo, Japan.		
Reference [1] Strobelt et al., IEEE TVCG, 2016. [2] S. Choi et al., AltMM, 2016.	[3] B. Li et al., ICASSP, 2019. [4] Y. Ren et al., ICLR, 2021.	[5] R. Sonobe et al., AST, 2019. [6] S. Takamichi et al., ASJ, 2020.	[7] https://kaggle.com/bryanpark/ korean-single-speaker-speech-dataset [8] https://keithito.com/LJ-Speech-Dataset/

©Shinnosuke Takamichi, Jan. 2023.

IEEE SLT 2022, Qatar

