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Abstract

Perceived voice likability plays a crucial role in various social
interactions, such as partner selection and advertising. A sys-
tem that provides reference likable voice samples tailored to
target audiences would enable users to adjust their speaking
style and voice quality, facilitating smoother communication.
To this end, we propose a voice conversion method that con-
trols the likability of input speech while preserving both speaker
identity and linguistic content. To improve training data scala-
bility, we train a likability predictor on an existing voice lik-
ability dataset and employ it to automatically annotate a large
speech synthesis corpus with likability ratings. Experimental
evaluations reveal a significant correlation between the predic-
tor’s outputs and human-provided likability ratings. Subjective
and objective evaluations further demonstrate that the proposed
approach effectively controls voice likability while preserving
both speaker identity and linguistic content.

Index Terms: speech synthesis, voice conversion, voice lika-
bility, paralinguistic voice control

1. Introduction

Speech conveys three types of information: (1) linguistic in-
formation, which is represented by sequences of discrete sym-
bols; (2) paralinguistic information, such as speaking styles,
which can be intentionally controlled by speakers; and (3) non-
linguistic information, such as speaker identity, which is typi-
cally beyond their control [1]. Numerous studies have explored
methods for controlling paralinguistic and non-linguistic fea-
tures in synthesized speech. For instance, in text-to-speech
(TTS) systems, various studies have proposed methods to con-
trol the emotional tone and speaking style [2,3]. Voice conver-
sion techniques, such as speaker conversion and style transfer,
have also been studied to control specific paralinguistic or non-
linguistic features [4, 2]. Typically, these techniques rely on
reference audio signals or emotion labels to control the desired
speech characteristics, whereas others employ natural language
prompts [5]. However, practical applications, such as designing
voices for advertisements targeting distinct customer segments,
require controlling speech characteristics based on more subjec-
tive criteria, such as target demographics. The direct manipula-
tion of paralinguistic and non-linguistic elements for subjective
purposes would enable more adaptable and targeted voice de-
signs. Furthermore, this capability could facilitate the develop-
ment of voice training applications that analyze a user’s voice
and generate a synthesized reference voice optimized for the
speaker and tailored to specific audiences.

Voice likability is a fundamental and inherently subjec-
tive aspect of both paralinguistic and non-linguistic features of
speech [6]. Several studies have demonstrated that voice lika-

bility significantly influences social outcomes, such as partner
selection and leadership quality [7, 8]. Some previous studies
have revealed a relationship between voice likability and fun-
damental frequency (f,) [9], while others have indicated con-
tributions from factors such as phoneme durations and speech
rate [10]. Analyses of a large corpus have confirmed that f, sig-
nificantly impacts voice likability and indicated that additional
acoustic features also contribute [11]. Since perceived voice
likability varies among listeners [6], it is a multifaceted phe-
nomenon that cannot be explained by a single acoustic feature.
Therefore, models that integrate multiple acoustic parameters
are necessary to predict and control likability effectively.

This paper presents a voice conversion method that con-
trols voice likability while preserving both speaker identity and
linguistic content. This method will enable users to enhance
their vocal performance by generating exemplary voice sam-
ples. However, since its development relies on subjective eval-
uations from multiple listeners for each training sample, the
method suffers from scalability issues. To overcome this lim-
itation, we utilize an existing voice likability dataset [11] to de-
velop an automatic likability predictor. The predictor enables
the development of a likability control model without additional
manual ratings, as it automatically assigns likability ratings to a
speech synthesis corpus. This paper details our approach to au-
tomatic likability prediction and voice conversion for likability
control. The paper also presents experimental results demon-
strating the effectiveness of the proposed method.

2. Automatic prediction of voice likability

This section describes our approach to automatically predict-
ing voice likability. Figure 1 shows the architecture of the
proposed likability predictor. The model accepts a log-Mel
spectrogram as input and employs time-delay neural networks
(TDNNSs) along with a statistics pooling layer, similar to the x-
vector architecture [12]. The model then outputs a single time-
invariant likability rating for each of four listener groups defined
by gender and age. We utilize the CocoNut-Humoresque cor-
pus, which provides subjective ratings for 1800 voice samples
along with gender and age information of the listeners [11].

Likability prediction is similar to mean opinion score
(MOS) prediction for synthesized speech [13, 14]. Unlike MOS
prediction, the ratings for a given speech sample can vary
among listeners. To leverage this characteristic, we partition
the listeners into four groups based on gender and age: males
under 40 (n = 202), males 40 or older (n = 323), females un-
der 40 (n = 143), and females 40 or older (n = 210), where n
denotes the number of listeners in the corpus. The model uses a
shared network to predict the mean rating for each group.

The rating distribution in the corpus is concentrated around
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Figure 1: Architecture of the proposed voice likability predictor. The predictor outputs likability ratings ranging from —1 to 1 for four
listener groups defined by age and gender: males under 40, males 40 or older, females under 40, and females 40 or older. T denotes
the number of time frames, and D denotes the number of dimensions of the intermediate features.

the center (i.e., near 0 when normalized to the range [—1, 1]).
To mitigate the effects of overfitting, we apply a post-filtering
process that linearly transforms the initial predictions. Specif-
ically, on the validation set, we first compute the mean p and
variance o2 of the human-provided ratings, along with the cor-
responding mean /z and variance 62 of the predictions. We then
compute the adjusted ratings 4’ from the predictions 4 by
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Since this transformation is linear, correlation-based evaluation
metrics remain unchanged.

Several previous studies have also investigated automatic
voice likability prediction [15, 16]. In contrast to these meth-
ods, which rely on multiple openSMILE-based acoustic fea-
tures, such as f,, energy, and Mel-frequency cepstral coef-
ficients (MFCCs), our single-network approach exhibits im-
proved noise robustness. Furthermore, the differentiable na-
ture of our network facilitates its seamless integration into larger
frameworks, such as TTS and voice conversion systems.

3. Voice conversion for likability control

This section describes the proposed voice conversion method
that controls voice likability while preserving both speaker
identity and linguistic information. Figure 2 depicts the archi-
tecture of the method. This method is based on a voice conver-
sion approach that utilizes sequences of discrete speech units
extracted from a self-supervised learning (SSL) model [17, 18].
First, the method extracts SSL features from the training data,
then applies k-means clustering to derive k cluster centroids. A
TTS model is then trained to synthesize speech signals condi-
tioned on three types of inputs: (1) cluster indices derived from
the SSL feature sequences as discrete units; (2) speaker embed-
dings extracted using ECAPA-TDNN [19]; and (3) target lika-
bility ratings. We employ hidden-unit BERT (HuBERT) [20]
for the SSL component and FastSpeech 2 [21] for the TTS
model. During synthesis, sequences of consecutive identical
discrete tokens are compressed into a single token. For exam-
ple, if the extracted discrete token sequence is [13, 7, 7, 21, 21,
5], the model input becomes [13, 7, 21, 5]. This strategy facil-
itates adjustments of speech rate based on speaker embeddings
and target likability ratings.

Training this model requires a multi-speaker corpus anno-
tated with likability ratings. Since the CocoNut-Humoresque
corpus is derived from the Coco-Nut [22], which comprises
speech samples collected from YouTube and processed via
source separation, high-quality synthesis cannot be achieved
using this corpus alone. In contrast, manually rating a multi-
speaker corpus is costly and is not scalable. To overcome this
limitation, we utilize likability ratings that are automatically
predicted by the likability predictor described in Section 2.
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Figure 2: Architecture of the proposed voice conversion model
for likability control. The model is based on FastSpeech 2 [21]
and utilizes HuBERT-based discrete units, speaker embeddings
extracted with ECAPA-TDNN [19], and target likability ratings.

This approach entails a trade-off between likability control
and speaker identity preservation: excessive control may com-
promise speaker identity, and vice versa. To improve usability
in application scenarios, our approach introduces a scalar mul-
tiplier s, which is applied to the embeddings of the target lika-
bility ratings. The scalar multiplier is fixed at 1 during training
but can be adjusted during inference to modulate the balance
between likability control and speaker identity preservation.

4. Experiment 1: Voice likability prediction

4.1. Experimental setup

We utilized the CocoNut-Humoresque corpus [11] and normal-
ized the ratings to the range [—1, 1]. The corpus is divided



Table 1: Time contexts and the number of dimensions for each
layer in the likability prediction architecture. Ts denotes the
total number of signal samples, T denotes the total number of
frames, and t denotes the time-frame indices.

Layer Layer context Inputxoutput
spectrogram [0,Ts) T, x 80T
framel {t—2,t,t +2} 240 x 32
frame2  {t—6,t—3,t,t+3,t+6} 160 x 32
frame3 t] 32 x 32
stats pooling [0,T) 32T x 64
segment4 [0] 64 x 32
segment5 [0] 32 x4

Table 2: Performance of likability prediction. MSE and Std rep-
resent the mean squared error and the standard deviation of the
test set, respectively. LCC, SRCC, and KTAU denote the linear,
Spearman rank, and Kendall rank correlation coefficients, re-
spectively. GT Std denotes the standard deviation of the human-
provided (ground truth) ratings. LCC values marked with ** are
statistically significant (p < 0.01).

Listeners |[ MSE|, Std LCCt SRCCt KTAU? | GT Std

M-39 | 0.17 040 0.36** 0.39 0.26 0.32
M40- | 0.12 034 041** 043 0.28 0.28
F-39 0.19 044 0.40*% 041 0.28 0.35
F 40— 0.17 041 0.38** 0.39 0.26 0.31

All | 0.08 029 046%* 049 033 | 0.26

into training, validation, and test sets comprising 1500, 300, and
300 audio samples, respectively. Each audio sample is approx-
imately 4 seconds long, recorded in stereo at a sampling rate
of 44100 Hz. We generated monaural signals by averaging the
stereo channels and downsampling them to 22 050 Hz.

Table 1 presents the dimensions and time contexts of each
layer. We extracted 80-bin log-Mel spectrograms up to 8000 Hz
with a hop length of 256 samples. The loss function was the
mean squared error between the predicted and human-provided
ratings, and the optimal model was selected based on the Spear-
man rank correlation coefficient computed on the validation set.

For data augmentation, we randomly appended silence to
the beginning and the end of the signals, applied reverberation,
added white noise, and reversed the signals in time. For rever-
beration, we used the impulse response dataset from the MIT
Acoustical Reverberation Scene Statistics Survey [23].

4.2. Results

Table 2 shows the performance of likability prediction. A sig-
nificant correlation (r = 0.46, p < 3X 107 17) was observed be-
tween the predicted and human-provided ratings; therefore, the
results indicate that the proposed approach effectively predicts
likability ratings. Moreover, post-filtering based on a linear
transformation adjusted the standard deviation of the predicted
ratings to follow that of the human-provided ratings while pre-
serving the correlation coefficients. Furthermore, regarding
the classification of the audio samples as “liked” or “disliked”
based on the mean rating, the proposed method achieved an ac-
curacy of 74% (F1 = 0.70), demonstrating its effectiveness in
predicting whether the voices were likable or not.
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Figure 3: Predicted likability ratings of utterances with con-
trolled likability. Thin lines represent the ratings for each gen-
der—age listener group, while the thick line represents the aver-
age rating across all four listener groups.

5. Experiment 2: Voice likability control
5.1. Experimental setup

We utilized two speech corpora: the JVS corpus, comprising
14997 utterances from 100 speakers [24], and the JTES corpus,
comprising 20000 utterances from 100 speakers in four emo-
tional styles (neutral, angry, joyful, and sad) [25]. We reserved
ten neutral sentences (sentences 41-50) uttered by two female
speakers (f49 and f50) and two male speakers (m49 and m50)
from the JTES corpus for evaluation. The training dataset, com-
prising the entire JVS corpus and 18240 utterances from the
JTES corpus, was constructed to ensure that sentences or speak-
ers did not overlap with the evaluation set. Speaker embeddings
and likability ratings were extracted for each utterance individ-
ually without averaging across speakers.

We adopted the mini-batch k-means algorithm [26] with
k = 1000 to cluster the SSL features. We used an open-
source FastSpeech 2 implementation' and applied its default
configurations for the LISpeech dataset. For waveform gen-
eration, we used a pre-trained universal HiFi-GAN model®
and fine-tuned it using Mel-spectrograms generated via teacher
forcing. We employed the HuBERT Large model as an SSL
model, which was trained on approximately 60000 hours of
Japanese television broadcast audio [27]. For speaker em-
bedding extraction, we used an open-source ECAPA-TDNN
model speechbrain/spkrec-ecapa-voxceleb’ [28].
The trade-off parameter s, described in Section 3 and Figure 2,
was set to 1 during training and to 2.5 during evaluation.

In the evaluation, we set the target likability range from —2
to 2. Note that since the likability ratings in the training data
were normalized to [—1, 1], the synthesis process extrapolates
likability values when they fall outside this range.

5.2. Objective evaluation

First, we evaluated the likability of the synthesized speech using
the likability predictor described in Section 4. Figure 3 shows
the results. For all listener groups, the synthesized speech’s lik-
ability was successfully controlled to follow the target ratings.

'https://github.com/ming024/FastSpeech2

’https://github.com/jik876/hifi-gan

3https://huggingface.co/speechbrain/
spkrec—-ecapa-voxceleb
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Figure 4: CER of speech recognition on the synthesized speech.
The leftmost column shows the results for natural speech.
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Figure 5: Cosine similarity between speaker embeddings ex-
tracted from reference and synthesized speech. The leftmost col-
umn shows the results for natural speech. The gray dashed line
indicates the similarity threshold corresponding to the equal er-
ror rate (EER) computed on the JTES corpus.

As shown in Figure 3, the predicted ratings range only from
—0.51 to —0.23, which is much narrower than the target range
of —2 to 2. Since the proposed method consistently preserves
speaker identity, the model appears to adjust voice likability
only within each speaker’s inherent range.

Next, we evaluated the preservation of linguistic content by
performing speech recognition on the synthesized speech and
computing the character error rate (CER). For speech recogni-
tion, we employed a Conformer model based on HuBERT fea-
tures [29,27] trained on the LaboroTVSpeech dataset, a large-
scale Japanese speech corpus [30]. Figure 4 shows the CER
results. The results indicate that the linguistic content remained
consistent under likability control when the target likability was
set within the range of —2 to 1. However, Figure 4 shows
that the conversion process resulted in a higher CER, espe-
cially for female speakers. This degradation indicates limita-
tions in the voice conversion model and suggests that further
improvements in clustering and model architecture are needed
to achieve higher-quality conversion.

Additionally, we evaluated speaker identity preservation by
computing the cosine similarity between the embeddings of the
reference and synthesized speech. We used 40 neutral sentences
(sentences 1-40) from the JTES corpus as a reference set and
extracted embeddings with the ECAPA-TDNN model described
in Section 5.1. The open-source implementation* uses a same-

“https://github.com/speechbrain/speechbrain
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Figure 6: Likability preference rates for synthesized utterances
with different target likability ratings. Each row corresponds to
a different speaker, while the “all” row represents the overall
ratings. Error bars indicate the 95% confidence intervals.

speaker threshold of 0.25, whereas the equal error rate (EER)
condition on the JTES corpus indicates a threshold of 0.48 for
speaker verification. The results shown in Figure 5 indicate that
speaker identity was preserved within the target ratings of —1
to 1, and the likability control process successfully maintained
speaker identity even as target likability values varied.

5.3. Subjective evaluation

We conducted listening tests with human participants to sub-
jectively evaluate the effectiveness of the likability control. We
applied the likability control to 10 utterances per speaker us-
ing three target likability values: —1, 0, and 1. Each listener
then evaluated three randomly selected sentences per speaker
for each pairing condition (—1 vs. 0, 0 vs. 1, and —1 vs. 1),
resulting in 36 pairwise comparisons in total. In the evaluation,
100 participants took part and were each paid 120 Japanese yen.

Figure 6 presents the results of the subjective evaluation.
The results indicate that, for three of the four speakers, the
synthesized speech’s likability was successfully controlled to
follow the target values, with the exception of speaker m49.
Specifically, significant differences in perceived likability were
observed between target values of —1 and 0, and an overall sig-
nificant difference was found between target values of —1 and 1.
On the other hand, little difference in likability was observed be-
tween target values of O and 1, possibly due to a degradation in
naturalness when the target value was 1. Among the four speak-
ers, speaker m49 exhibited an unexpected pattern: rather than
increasing, perceived likability decreased as the target value in-
creased from O to 1, and a significant degradation in likability
was observed between target values of —1 and 1. A possible ex-
planation is that, for speaker m49, the synthesized speech failed
to effectively preserve speaker identity, as indicated in Figure 5,
resulting in an unnatural sound.

6. Conclusion

This paper presents a method for controlling voice likability for
any speaker by extending a voice conversion approach that uses
discrete speech units. To improve the scalability of training
data, we constructed a likability predictor based on a voice lik-
ability corpus and used it to automatically annotate speech syn-
thesis corpora with likability ratings. The results of both subjec-
tive and objective evaluation indicate the effectiveness of lika-
bility control as well as the preservation of speaker identity and
linguistic content. Future work includes extending our approach
to a voice control application that enables users to specify de-
sired voice design characteristics through natural language or
parameters beyond likability.
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