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Abstract
In this paper, we present J-SPAW (Japanese speaker verifica-
tion and spoofing attacks recorded in-the-wild dataset), a novel
speech database designed for speaker verification and spoof-
ing detection in-the-wild environments1.J-SPAW is a unique
database that simultaneously evaluates speaker verification and
spoofing detection under realistic conditions, focusing on phys-
ical access scenarios, including replay attacks. The database
includes diverse physical access scenarios, enhancing the vari-
ety and applicability of datasets available for anti-spoofing re-
search. Our experimental results demonstrate that J-SPAW en-
ables comprehensive analysis of spoofing detection from vari-
ous perspectives and can be utilized for both speaker verifica-
tion and spoofing detection tasks. This contribution is expected
to advance state-of-the-art speaker verification and spoofing de-
tection and provide a valuable resource for future research.
Index Terms: Automatic speaker verification, spoofing attacks,
replay attack, speech dataset, in-the-wild recording

1. Introduction
In recent years, the spreading of smartphones and the expansion
of voice assistant usage have heightened the importance of auto-
matic speaker verification (ASV) [1]. ASV is a technology that
identifies individuals using unique information in their voices,
and it holds great promise for various applications. However,
as ASV technology advances, the threat of spoofing attacks has
also increased, making it urgent to develop countermeasures to
ensure the reliability of ASV systems [2]. Spoofing attacks can
be broadly classified into physical access (PA) attacks and log-
ical access (LA) attacks, with active research driven by contri-
butions from the ASVspoof challenges [3, 4].

For PA attacks, the collection of replay attack data is nec-
essary, and there are few databases outside of competitions that
can simultaneously evaluate ASV and spoofing detection. No-
table PA databases include ASVspoof 2017 [5] and ASVspoof
2019 [6]. ASVspoof 2017 provides data that considers var-
ious replay attack scenarios, including the impact of record-
ing environments and playback devices. ASVspoof 2019 of-
fers a larger-scale database considering more diverse environ-
ments and devices, allowing for integrated evaluation with ASV.
However, these databases are primarily designed for compe-
titions and lack sufficient discussion on speech data collected
in the wild environments. PA-specific databases such as Re-
MASC [7] and AVspoof [8] exist. ReMASC considers more
diverse recording environments and is particularly suitable for

1The J-SPAW database is publicly available at: https:
//github.com/takamichi-lab/j-spaw/blob/main/
README_en.md

evaluating the impact of replay attacks in mobile device envi-
ronments. AVspoof covers various replay attack scenarios, con-
sidering various source recording and playback devices. How-
ever, these databases do not aim to simultaneously evaluate both
ASV and anti-spoofing, making consistent evaluation challeng-
ing.

As such, existing PA databases each have their character-
istics, but there are limited datasets that can evaluate the im-
pact of diverse replay attack environments while simultane-
ously considering speaker verification. To address this, we have
constructed a new database, J-SpAW (Japanese speaker verifi-
cation and spoofing attacks recorded in-the-wild dataset), for
Japanese ASV and spoofing detection. This database considers
both ASV and spoofing detection scenarios. It is recorded in
environments that simulate situations where attackers might re-
alistically obtain voice samples without the consent of an autho-
rized speaker. Specifically, it includes diverse speech content,
speaker attributes, recording environments, and various types of
spoofed speech.

Our experiments demonstrate that J-SpAW performs well
as an evaluation set for speaker verification. Furthermore, in
spoofing detection, we confirmed that the recording environ-
ments for genuine speech and replay attacks are meticulously
labeled, allowing for detailed analysis of their impacts. We
also evaluated J-SpAW using the ASVspoof baseline model and
one of the state-of-the-art model, reporting on the differences in
characteristics and trends between the models.

2. Related works

2.1. Automatic speaker verification and spoofing counter-
measure

ASV is a binary classification task that determines whether the
input speech matches the registered speech of the same speaker.
It involves comparing the features of the input speech sample
with those stored in the system to verify the speaker’s iden-
tity. As the accuracy of ASV improves, concerns about spoof-
ing attacks have similarly increased. Various spoofing attacks
are broadly classified into PA attacks using playback record-
ings and LA attacks using synthetic speeches. Various coun-
termeasures (CM) have been proposed to detect these attacks.
For PA attacks, many studies focus on the noise during non-
consensual recordings (source recordings) or replayed spoofed
speeches and the differences between human liveness charac-
teristics and loudspeaker playback characteristics [9, 10]. For
LA attacks, numerous studies use various text-to-speech (TTS)
synthesis and voice conversion (VC) techniques in training to
model the unique characteristics of synthetic speeches [11, 12].



Table 1: Comparison of datasets in terms of tasks (spoof detec-
tion or ASV), language, source recording type, and environment
of replayed recordings.

Dataset Spoof ASV Lang Source
recording

Replayed
env.

AVspoof [8] PA/LA En Controlled Clean
ASVspoof2015 [3] LA ✓ En - -
BTAS [13] PA/LA En Controlled Various
ASVspoof2017 [5] PA ✓ En Controlled Various
ASVspoof2019 [6] PA/LA ✓ En Artificial Clean
ASVspoof 2021 [14] PA/LA ✓ En Artificial Clean
ReMASC [7] PA En Realistic Various
VSDC [15] PA En Controlled Various
LRPD [16] PA En Artificial Clean
J-SpAW (ours) PA/(LA) ✓ Ja Realistic Various

Figure 1: Illustration of genuine recording, non-consensual
recording (source recording), and replay attack. Voices by the
non-consensual recording are used in the replay attack.

2.2. Datasets for spoofing attack detection

Various datasets for spoofing attacks have been released; how-
ever, not many include PA attacks. Additionally, there are dif-
ferences in whether the datasets target spoofing detection tasks
alone or also include the ASV task, as well as in the record-
ing environments of the spoofed speeches. These differences
are summarized in Table 1. As shown in Table 1, few datasets
include both spoofing and ASV tasks, and even fewer assume
recording in realistic environments. Furthermore, while the
source recordings in ReMASC are characterized by recording
the genuine speaker’s speeches close to the attacker’s mouth,
our study assumes non-consensual source recordings, where the
genuine speaker’s voice is recorded without their consent and
from a distance from the recording microphone. This distin-
guishes our dataset from others.

3. Dataset construction strategy
The dataset consists of two categories of speech: genuine
speech, which humans speak, and spoofed speech, which is
generated through PA attacks conducted by an attacker using
recorded playback. Each speech utterance is labeled as ei-
ther genuine or spoofed and includes additional metadata such
as speaker information, recording environment details during
non-consensual recording or spoofing attacks, and other rele-
vant conditions. This allows the dataset to be utilized for both
anti-spoofing and ASV tasks. Figure 1 illustrates the record-
ing methods for genuine recordings, non-consensual recordings
(source recordings), and replay attacks, while Figure 2 shows
the recording environments during the collection of spoofed
speech.

3.1. Text material and participants recruit

We designed a text set consisting of 50 sentences in total: 25
voice command sentences that include a wake-up word such as
“OK Google,” and 25 dailylife-style sentences. Of these, 25

Figure 2: Examples of recording conditions. Similarly, some
conditions are used in replay attack.

Table 2: Recording and Replay conditions.
Label Description
Genuine recording microphone
M1 Google Pixel 3 (1.0m from the speaker)
M2 Apple iPhone 8 (same position as above)
Non-consensual recording microphone
M3 Apple iPad mini 5th generation
Genuine/non-consensual recording room
R1 Room (4.4(W) × 7.4(L) × 2.5(H) [m]) at insti-

tution 1
R2 Outside closing to a road at institution 1
R3 Room (10.8(W)× 2.0(L)× 2.8(H) [m]) at insti-

tution 2
R4 Outside with lawn at institution 2
Recording environment
E1 Quiet (R1, R3)
E2 Air conditioner is activating (R1, R3).
E3 Music is playing from a smart speaker (R1, R3).
E4 Outside (R2, R4)
Replay room
r1 Room (11.0(W)× 8.0(L)× 2.6(H) [m]) at insti-

tution 2
Replay loudspeaker
s1 Bose Soundlink Micro Bluetooth Speaker Bundle
s2 iPad
s3 MacBook Pro
s4 Sony SRS-ZR7
Replay environment
e1, e2, e3 Same to E1, E2, E3, respectively. e3 and E3 are

different in songs used.
Replayed recording microphone
m1, m2 Same to M1, M2 respectively.

voice command sentences and 20 daily-life style sentences are
crafted to ensure a balanced distribution of phonemes in the tar-
get language (Japanese), while the remaining 5 daily-life style
sentences are used as evaluation data.

We recruited participants (speakers) via snowball sampling.
The participants were 21 male and 19 female native Japanese
speakers. Each participant received 3000 JPY for their partici-
pation.

3.2. Genuine and non-consensual speech recording

As shown in Figure 1, both genuine and non-consensual speech
recordings by an attacker are carried out simultaneously. The
scenario assumes a situation where the attacker records the gen-
uine speaker’s speech without consent, with the non-consensual
recording occurring at a distance from the genuine speaker.
Genuine speech is treated as the actual speech in the context
of spoof detection and as the speech of the registered speaker in
ASV. Speech recorded through non-consensual recording can
be considered source recording for performing a replay attack.
The speaker sits in a chair and speaks toward a smartphone
placed in front of them; the smartphone records the speech.
This setup simulates the speaker speaking directly into their



smartphone. However, we fixed the smartphone onto a stand
on a desk to avoid changes in acoustic characteristics if the
smartphone were handheld.This smartphone is named the gen-
uine recording microphone. Assuming the attacker is seated
across from the speaker, a tablet is placed on the attacker’s
desk to record the genuine speaker’s speech. This recorded
speech is regarded as the non-consensual utterance, and we
call the tablet the non-consensual recording microphone. We
carry out these recordings in multiple locations and acoustic
environments. We refer to the location as the genuine/non-
consensual recording room2 and the acoustic environment as
the genuine/non-consensual recording environment. We simu-
late a typical daily acoustic environment for indoor recording,
e.g., air-conditioner noise and background music. Under each
condition, every participant (speaker) utters the text designed in
Section 3.1. For all microphones, the sampling frequency, audio
format, and number of channels are set to 48 kHz, RIFF WAV
format, and single channel, respectively.

3.3. Physical access recording

Spoofed speech is recorded by replaying non-consensually
recorded speech through a loudspeaker and capturing it with
a smartphone. The room, the acoustic environment, the play-
back device, and the recording device used for this attack are
referred to as the Replay Room, Replay Environment, Replay
Loudspeaker, and Replayed Recording Microphone, respec-
tively. The sampling frequency and format are the same as
those described in Section 3.2. The speech captured by the re-
played recording microphone is treated as a spoofed utterance
in a spoofing attack.

3.4. Transfer function canceling

The performance of a replay attack depends on the replay en-
vironment, replay loudspeaker, and replayed recording micro-
phone. Assuming a linear time-invariant acoustic characteristic,
let x be the non-consensual utterance, h be the acoustic trans-
fer function of the attack environment, and y be the observed
signal. Then, y = h ∗ x. If h can be canceled, it is expected
that y would match x, making the replay attack more likely to
succeed. Hence, we measure h by playing an impulse response
measurement signal (time-stretched pulse) through the replay
loudspeaker and recording it with the replayed recording mi-
crophone. We then convolve x with the inverse filter h(inv),
obtaining x′ = h(inv) ∗ x as a new non-consensual utterance,
and use x′ to conduct the replay attack. In a realistic setting, it
is not feasible for the attacker to directly access the recordings
of the replayed recording microphone. However, it is possible
to simulate this scenario. For example, one might estimate the
impulse response based on captured images or perform a com-
puter simulation that models the replay environment. Another
simpler method would be for the attacker to place a new mi-
crophone near the replayed recording microphone to measure
the impulse response. In this section, we regard the impulse re-
sponse we measure as the ideal value that could be obtained by
such methods.

4. Experiment
We evaluated the performance of J-SpAW using ASV and
spoofing detection. The recording devices and environments

2Although we use the word “room,” Table 2 shows that this may
include outdoor environments.

Table 3: EER (%) for ASV evaluation using J-SpAW and Vox-
Celeb1 evaluation data.

Model J-SpAW Voxceleb1
ECAPA-TDNN[18] 1.75 0.86
ResNetSE34V2[19] 2.99 1.02

RawNet3[19] 1.87 0.89

used in this experiment are summarized in Table 2.

4.1. Experimental condition

4.1.1. ASV evaluation

As described in Section 3.2, J-SpAW enables speaker verifica-
tion evaluation using genuine speech recordings. Therefore, we
assessed speaker verification performance using several state-
of-the-art speaker verification models. All models were pre-
trained on VoxCeleb2 [17], and the three models used in the
evaluation were ECAPA-TDNN [18], ResNetSE34V2 [19], and
RawNet3 [19]. Evaluation was conducted using the Equal Error
Rate (EER).

The data composition for ASV evaluation in J-SpAW is as
follows: A total of 8,000 genuine speech utterances (40 speak-
ers × 50 utterances × 4 recording environments) were recorded,
where the four recording environments correspond to E1–E4 in
Table 2. Five utterances per speaker were selected for the ASV
evaluation set, resulting in 800 utterances. Following the ap-
proach of VoxCeleb1, 7,600 genuine trials and 30,000 imposter
trials were prepared, yielding a total of 37,600 trials. The gen-
uine recording microphones used were a Pixel 3 (Pixel) and an
iPhone 8 Plus (iPhone). During recording, both devices were
placed side by side and recorded simultaneously. However, time
synchronization was not performed.

4.1.2. Physical access evalution

We evaluate the spoofing detection performance of J-SpAW in
the PA task. For the PA task, 25 voice command sentences were
recorded through non-consensual recording and conducted si-
multaneously with genuine speech recording. A total of 4,000
utterances (40 speakers × 25 utterances × 4 recording envi-
ronments) were utilized as source recordings for replay. The
replayed recording microphones used the identical Pixel and
iPhone as the genuine speech recording. The recording environ-
ments for the spoofed audio were silence, air conditioning, and
music, which are referred to in e1 to e3, respectively, as shown
in Table 2. The replayed recording microphones were per-
formed using the same Pixel and iPhone as the genuine speech
recording. The recording environments for the spoofed audio
were silence, air conditioning, and music, where reffered in e1
to e3, respectively as shown in Table 2. We conducted spoofing
detection experiments using 96,000 replay attacks (4,000 utter-
ances x 3 replay environments x 4 replay loudspeakers x 2 re-
played recording microphones) and 800 utterances (40 speakers
x 5 utterances x 4 recording environments) that were the same
as the ASV evaluation set in J-SpAW.

These utterances were evaluated using two spoofing detec-
tion models: the pre-trained Linear Frequency Cepstral Co-
efficients Gaussian Mixture Model (LFCC-GMM) [20, 21],
which is published as a baseline system in ASVspoof2021, and
wav2vec2.0 and AASIST (w2v2+AASIST) [22], which had one
of the best performance in ASVspoof2021. The evaluation also
used the EER, which is similar to ASV; however, its meaning
differs. It indicates the point at which the genuine speech rejec-
tion rate equals the spoofed speech acceptance rate. A higher



Table 4: EER(%) for spoofing detection (LFCC-GMM/w2v2.0+AASIST)
Conditions r1 m1 m2 e1 e2 e3 s1 s2 s3 s4 Pooled

R1 46.94/4.13 48.20/2.87 46.35/5.35 42.86/4.13 50.16/3.80 48.87/4.75 60.08/1.59 21.24/7.04 40.07/5.40 57.78/1.29 46.94/4.13
R2 34.27/0.95 36.02/0.73 33.33/0.97 29.40/0.95 37.96/0.95 34.44/0.95 41.10/0.02 16.03/1.68 25.94/0.95 43.81/0.00 34.27/0.95
R3 54.04/1.06 51.66/0.43 55.87/1.40 44.59/0.72 59.59/0.39 56.90/1.75 73.33/0.31 20.35/1.11 47.40/1.82 70.18/0.09 54.04/1.06
R4 54.61/0.81 54.74/0.11 53.54/0.99 47.45/0.89 59.87/0.17 54.74/0.84 78.95/0.02 27.37/0.96 43.16/1.12 71.74/0.00 54.61/0.81
E1 44.51/2.00 44.09/1.42 44.99/2.50 38.07/2.00 48.50/2.00 46.98/2.50 59.50/0.50 18.07/3.11 37.88/2.50 57.53/0.43 44.51/2.00
E2 45.11/2.48 44.98/1.51 45.50/3.03 38.95/2.10 48.88/2.06 47.56/2.95 60.00/0.48 19.50/3.50 38.55/3.46 58.50/0.42 45.11/2.48
E3 54.50/4.38 54.50/3.43 55.00/5.38 48.54/4.00 58.00/4.00 57.00/4.50 68.92/1.50 28.62/6.00 49.54/5.50 68.00/1.07 54.50/4.38
E4 45.00/1.50 44.55/1.00 45.00/2.01 38.98/1.50 48.02/1.50 46.58/1.95 60.00/0.40 19.09/2.90 38.58/2.06 57.44/0.12 45.00/1.50
Pooled 46.88/2.64 46.50/1.88 47.12/3.49 41.00/2.62 50.50/2.60 49.38/3.00 62.11/0.74 21.77/4.24 40.89/3.74 59.75/0.62 46.88/2.64

EER indicates that spoofing detection failed. Since the spoofing
attack was successful, it can be said that it is more challenging
to detect spoofing attacks.

4.2. Experimental results

4.2.1. ASV evaluation

Table 3 presents the EERs of ASV for each model. For all
three models, the EER of J-SpAW is slightly higher than that
of VoxCeleb1. It can be considered that these pre-trained mod-
els were trained on VoxCeleb2, which differs in language and
domain from J-SpAW. However, the obtained EER values are
sufficiently low, indicating that J-SpAW is not a particularly dif-
ficult task for ASV and is adequate as an ASV system to be used
after spoofing detection.

4.2.2. Physical access evaluation

Table 4 presents the EERs for spoofing detection for both the
LFCC-GMM and AASIST models. The table rows delineate the
EER for each environment during source recordings, whereas
the columns illustrate the EER for each environment during
replayed recordings. The overall EER, as shown in the bot-
tom right corner of the table, was 46.88% for LFCC-GMM
and 2.64% for w2v2+AASIST. Since LFCC-GMM is not in-
herently a high-performance detection model, it was expected
that the detection performance for J-SpAW would not be very
high. On the other hand, the EER for w2v2+AASIST is low, in-
dicating successful spoofing detection. Comparing the rows in
the Pooled section, LFCC-GMM shows consistently high EER
across all recording environments. Except for the case where
replay was performed using s2 (iPad), it failed to detect spoof-
ing effectively. Similarly, when comparing the Pooled columns,
EER remains above 34% in all conditions. On the other hand,
w2v2+AASIST achieves significantly higher spoofing detection
accuracy, making the impact of recording conditions more ap-
parent compared to LFCC-GMM. The EER is below 1% in re-
play recording when using s1 (Bose) and s4 (Sony) loudspeak-
ers. However, it is higher when using s2 (iPad). This sug-
gests that while w2v2+AASIST successfully learns the play-
back characteristics of high-end speakers, its detection perfor-
mance may degrade for lower-quality speakers. Regarding the
recording conditions for genuine speech, R2, R3, and R4 ex-
hibit high spoofing detection performance, whereas R1 and E3
show slightly higher EER. In particular, E3 represents a non-
consensual recording scenario with background music, making
spoofing detection more challenging.

When additional combinations were compared, the com-
bination of e2 (air-conditioned) and s4 (Sony) achieved the
highest detection performance with w2v2+AASIST. Table 5
presents the results after applying the transfer function cancel-
ing method (described in Section 3.4) to mitigate the impact of

Table 5: EER (%) of spoofing detection without and with trans-
fer function canceling

w/o canceling w/ canceling
w2v2+AASIST 0.52 1.12

Table 6: Uncorrected p-values between factors by ANOVA. The
smaller this value is, the more there is an interaction between
the two factors that affect EER. Bold indicates p < 0.05.

Factor 1 Factor 2 LFCC-GMM w2v2+AASIST
R1–R4 e1–e3 0.995 0.907
R1–R4 m1–m2 0.894 0.102
R1–R4 s1–s4 0.000 0.000
E1–E4 e1–e3 1.000 1.000
E1–E4 m1–m2 1.000 0.893
E1–E4 s1–s4 1.000 0.003
e1–e3 m1–m2 0.026 0.408
e1–e3 s1–s4 0.000 0.242

m1–m2 s1–s4 0.293 0.030

the loudspeaker and room transfer function during replay at-
tacks. Consequently, the EER increased slightly, suggesting
that reducing the influence of the replay attack environment
makes spoofing detection more challenging.

4.3. Impact of recording / attack conditions

Finally, we investigate the interaction between the source and
replay attack recording conditions. Because each condition can
be set independently, one would intuitively expect that each
condition affects the EER independently and that no entan-
glement occurs between conditions. To verify this, we used
ANOVA to compute the two-way interactions between condi-
tions. Table 6 shows the p-values for these interactions. In most
of the condition pairs, there is no interaction. However, for
both models, there is a strong interaction between the record-
ing room and the replay loudspeaker. The EER appears to be
strongly influenced by combining these two factors. Moreover,
for LFCC-GMM and w2v2+AASIST, different factors exhibit
interactions. Model traits emerge through interactions. Our cor-
pus is expected to contribute to evaluating such interactions and
training models with minimal inter-condition interaction.

5. Conclusion
Replay attacks, a type of physical access attack, require
source and replay recordings, limiting the diversity of exist-
ing databases. To enhance diversity and enable analysis of
recording environments and their relationship with ASV, we
constructed a new J-SpAW database and evaluated its perfor-
mance. Future challenges include expanding the variety of
spoofing recording environments, addressing logical access at-
tacks, and developing speech datasets that further increase the
difficulty of spoofing detection.
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