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Abstract

The purpose of speech tokenization is to transform a speech
signal into a sequence of discrete representations, serving as the
foundation for speech language models (SLMs). While speech
tokenization has many options, their effect on the performance
of SLMs remains unclear. This paper investigates two key as-
pects of speech tokenization: the segmentation width and the
cluster size of discrete units. First, we segment speech signals
into fixed/variable widths and pooled representations. We then
train K-means models in multiple cluster sizes. Through the
evaluation on zero-shot spoken language understanding bench-
marks, we find the positive effect of moderately coarse seg-
mentation and bigger cluster size. Notably, among the best-
performing models, the most efficient one achieves a 50% re-
duction in training data and a 70% decrease in training runtime.
Our analysis highlights the importance of combining multiple
tokens to enhance fine-grained spoken language understanding.
Index Terms: speech language models, spoken language un-
derstanding

1. Introduction

With the recent breakthroughs in large language models for
textual natural language processing, speech language models
(SLMs) have emerged as a new paradigm for spoken language
processing [1—4]. SLMs are built by training language mod-
els on top of discrete speech representations (called “discrete
units”). The process of converting a speech signal into a dis-
crete unit sequence is called “speech tokenization”. Speech to-
kenization is typically performed by quantizing representations
obtained from self-supervised learning (SSL) models [5-7].
Leveraging the rich representations of SSL models, SLMs
trained on these discrete units have demonstrated strong perfor-
mance in zero-shot spoken language understanding (SLU) [8],
spoken dialogue [9], speech-to-speech translation [10], and
other related tasks.

Various speech tokenization techniques have been proposed
to enhance SLM performance. Generative Spoken Language
Modeling (GSLM) and its variants simply apply K-means clus-
tering to the SSL model representations as is [1,2,11]. However,
since SSL model representations typically correspond to ap-
proximately 20 ms speech, the resulting discrete unit sequence
tends to be long. This severely affects the training of the
Transformer-based language model [12] as computation cost in-
creases quadratically with respect to the sequence length. Be-
sides, previous study suggests that speech SSL representations
primarily encode phonetic rather than semantic feature [13],
which might impair the capability of SLMs on a deeper under-
standing of spoken language. To address these issues, previ-
ous research has invented speech tokenization techniques that
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Figure 1: Overview of our research. First, we extract contin-
uous speech representation from the SSL model. We add seg-
ments to the representation sequence by N ms and pooled them.
We apply K-means clustering to pooled representations with the
cluster size of K. By training SLMs in multiple settings of N
and K, we explore the optimal choice for spoken language un-
derstanding.

segment input speech into fixed or variable-width units before
discretization [14—16]. While segmentation reduces sequence
length, it might cause a loss of information preserved in the
original representation, and there is no clear agreement on the
optimal tokenization scheme for this tradeoff and its reason.

This paper examines two key aspects of speech tokeniza-
tion: the segmentation width and the cluster size of discrete
units. As depicted in Figure 1, we first segment the SSL repre-
sentation sequence in a fixed width and pooled features within
each segment to obtain coarser representations. Using these
pooled representations, we then train K-means models to gener-
ate discrete unit sequences. By applying multiple segmentation
widths and varying the cluster sizes of the K-means model, we
explore the optimal configurations for zero-shot SLU tasks.

Through comparative experiments, we find the positive ef-
fect of segmenting by moderately coarse width and making
cluster size bigger at the same time. We qualitatively suggest
that larger segmentation width requires a larger vocabulary to
accurately represent input speech. Notably, a large segmenta-
tion setting reduces sequence length, enabling more lightweight
training without sacrificing performance. We also observe that
specific benchmarks have different optimal settings, highlight-
ing the importance of combining multiple tokens for SLU. Be-
sides fixed-width segmentation, we also investigate variable
segmentation based on linguistic units (i.e., phonemes, sylla-
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Table 1: Minimum and maximum number of tokens for ev-
ery segmentation width. Minimum and maximum values cor-
respond to K = 27 and K = 24, respectively.

N ‘20 40 80 120 160 200 240 280

min 8M 63M 39M 27M 2IM 1M 14M 12M
max | 127M 77M 42M 28M 22M 1M 14M 12M

bles, and words) and compare their performances. Our results
demonstrate that variable segmentation does not show a clear
advantage over fixed-width segmentation, suggesting that sim-
pler segmentation methods may be preferable.

The experimental code is made publicly available'.

2. Tokenization Methods to be Explored

As depicted in Figure 1, we first extract continuous speech rep-
resentations of input speech using the SSL model. Throughout
this study, we used HuBERT [7] as an SSL model and extracted
representations from the ninth layer. On top of this representa-
tion sequence, we performed speech tokenization in three steps.

1. Segment a sequence by N ms and apply mean pooling.
2. Apply K-means clustering with the cluster size K.
3. Deduplicate units. (e.g. 54 54 54 88 88 3 — 54 88 3)

Since each HUBERT representation corresponds to 20 ms
speech, IV is chosen as a multiple of 20. We experiment with
eight values: {20, 40, 80, 120, 160, 200, 240, 280}, where
N = 20 corresponds to the original sequence. As N becomes
larger, the resulting sequence length becomes shorter by the fac-
tor of N/20. As for K, the choice of value is not consistent
across SLM studies, ranging from {50, 100, 200} [1] to {5k,
10k, 20k} [16]. To comprehensively cover this range, we ex-
periment with eight values of powers of two: from 27 = 128 to
2'4 — 16384. In total, we employed 8 x 8 = 64 tokenization
methods.

Previous studies typically set a smaller cluster size for
methods with small segment widths [1,3], while larger segment
widths are paired with larger cluster sizes [15,16]. This research
supplements the cases of large/small cluster size and small/large
segment width, aiming to gain deeper insight into these two as-
pects.

3. Experimental Setup
3.1. Dataset

As atraining set for SLM, we used LibriSpeech [17], a 960-hour
English audiobook corpus. Although this dataset is relatively
small for SLM studies, our preliminary experiments showed
that using a larger dataset (LibriLight [18]; 60k hours audio-
book corpus) did not lead to performance improvements. A re-
cent study on SLM based on syllable-level units [16] also sup-
ports the use of LibriSpeech, as it reports better performance
compared to baselines trained on the larger dataset. Table 1
presents statistics on the training data. As described in Sec-
tion 2, the sequence length is smaller when NV is larger, resulting
in a smaller dataset size. We show the minimum and maximum
values across K. The smaller K is, the more likely there are
repetitions, resulting in fewer tokens after deduplication.

Uhttps://github.com/mynlp/speechlm

Table 2: Example pairs from benchmarks for spoken language
understanding.

sBLIMP \ (v Dogs eat meat, X Dogs eats meat)
sWUGGY | (/ brick, X blick)

But in the next breath [PAUSE] he cautioned.
X But in the next [PAUSE] breath he cautioned.

But in the next [PAUSE] breath he cautioned.
X But in the next breath he cau [PAUSE] tioned.

pros-syntax

pros-lexical

Ana was tanning on the beach. She dozed off in the
warm sun. She woke three hours later. Her eyes
widened as she looked in the mirror.

Ana was extremely sunburnt.
X Michael hoped the new squirrel would fare.

tStoryCloze
(tSC)

3.2. Model Setup

We trained all K-means models on a 100-hour subset of the Lib-
riSpeech training set. For SLM training, we used OPT [19], a
decoder-only Transformer language model. We tuned hyper-
parameters to match GSLM [1], resulting in 12 layers, 16 at-
tention heads, embedding size of 1024, and FFN size of 4096.
To accelerate training, we concatenated all training data and
grouped sequences into chunks of 2,048 tokens. Each model
was trained for up to 50,000 steps with a batch size of 16 on a
single NVIDIA A100 GPU. We applied an early stop when the
validation loss did not improve for 1,000 consecutive steps. We
report the average scores of SLMs trained with three different
random seeds.

3.3. Evaluation

We evaluate SLMs on five types of zero-shot SLU tasks shown
in Table 2. Each task consists of pairs of correct and incorrect
speech audio samples, and the model is evaluated based on its
ability to assign a higher likelihood to the correct sample. The
chance rate is 0.5 for all tasks.

sBLIMP [8] assesses the model’s grammatical knowledge.
Each task is categorized according to 12 types of linguistic phe-
nomena, such as subject-verb agreement or argument structure.
sWUGGY [8] verifies whether a model has lexical knowledge.
It consists of a pair of an existing word and a slightly modified
nonce word. pros-syntax and pros-lexical are from prosaudit
benchmark [20], which probes model’s capability in handling
prosodic information. Stimulus pairs are constructed by insert-
ing a 400 ms pause to the natural and unnatural position within
speech. In the pros-syntax task, the correct pause placement
corresponds to a prosodic phrase boundary. In the pros-lexical
task, the correct placement is at a word boundary, while the in-
correct placement is within a word. Topic SC (tSC) [2] tests
whether a model has commonsense knowledge. This is a spo-
ken version of StoryCloze [21], which rewrites the last sentence
of a five-sentence story to produce an incoherent story. Since
the original Spoken SC (sSC) dataset is regarded as too chal-
lenging [2], we used tSC instead, where the final sentence is
randomly chosen from the dataset to generate topically incoher-
ent story?.

2We also evaluated on sSC but found that all models performed at
near-chance rate accuracy.
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Figure 2: Main results of SLM performance on zero-shot SLU tasks.

Table 3: Best performing K values, average accuracies among
five tasks, and training runtimes for N = 20, 40, 80, 120.

N ‘ Best K Avg. Acc.  Train Runtime
20 | 27 (128) 0.65 12.4 hours

40 | 2'3(8192) 065 11.5 hours

80 | 2'*(16384) 0.67 8.3 hours

120 | 2 (16384) 0.66 6.7 hours

4. Main Result

For simplicity, we denote the configuration with segment width
N and cluster size K as (N, K).

Figure 2 shows results on fixed boundary settings. We
observe that the best-performing configurations are centered
around (80, 2'%). An exception is tSC, where the optimal set-
ting appears to be around (40, 2%) (if any), though the differ-
ences in accuracy are not significant. For a clear compari-
son, we identify the best K values based on average accuracy
across the five tasks. We focus on relatively small N values
(20, 40, 80, 120), as larger N tends to degrade performance. Ta-
ble 3 shows the summary, including average training runtimes.
As we’ve seen in Table 1, increasing N results in smaller dataset
size, which contributes to shorter training runtime. Notably, the
best-performing setting (80, 2'*) reduces the training data by
50% (42M vs. 87M) and the training runtime by 70% (8.3h vs.
12.4h) compared to (20,27) setting.

In terms of benchmarks, while both sSBLIMP and pros-
syntax are related to syntactic knowledge, the accuracy on pros-
syntax is significantly higher than on sBLIMP. This suggests
that SLMs have a high capability of handling prosodic features
but struggle with a deeper understanding of natural language.
For pros-syntax, we observe exceptionally high accuracies even
at the largest NV values. This may be attributed to the fact
that prosaudit inserts a 400 ms pause to stimuli, which is much
longer than N. For lexical tasks (sSWUGGY and pros-lexical),
although pros-lexical shows higher accuracy, both tasks exhibit
similar overall trends. On the other hand, tSC results show a
slightly different tendency: there seems to be no clear optimal
setting. Investigating the underlying factors behind this differ-
ence remains for future research.

5. Analysis

5.1. Effect of Larger N and K

Overall, for larger N, accuracy tends to improve with increas-
ing K. This observation is analogous to the relationship be-
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Figure 3: An example from sWUGGY where (20,27) and
(80,2 can solve but (80,27) fails. Differences in phoneme
or unit are shown in bold. The first row shows the actual stim-
uli from the dataset and the rest shows unit sequences. Since
the dataset does not include phonetic alignments, we annotated
them by ourselves using Praat [22].

tween phoneme and morphome: combining a small number of
phonemes produces a large number of morphemes [23]. In other
words, in smaller IV, the model does not require a large vocab-
ulary because there are fewer categories that are essentially dis-
tinct. As IV increases, the vocabulary size must also be larger
to accommodate the growing number of categories.

To discuss it qualitatively, we extract cases where the com-
bination of (large NN, small K) fails but (small N, small K)
and (large N, large K) can solve. Figure 3 shows an example
from sWUGGY. In this example, SLMs with setting (20, 27)
and (80,2') could assign higher likelihood to the existing
word “yonder”, but (80,27) could not. There is a difference
in phoneme up to 140 ms (Y vs. Z), which is captured by set-
tings (20,27) and (80, 2'*) as the discrete unit sequences dif-
fer within this range. However, the setting (80, 27) fails to re-
flect the difference between 80 ms and 140 ms: in this range, it
assigns the same unit “54” to both stimuli. This might be at-
tributed to the lack of vocabulary, which is resolved by increas-
ing K from 27 to 2'*. It would be interesting to investigate
whether this effect applies to larger N with much larger K, but
that could make training difficult for both the K-means model
and SLMs. Future work could investigate on training SLMs
with continuous representations, which can be viewed as the
limit of discrete representations [24].

5.2. sBLIMP Accuracy Split by Task Type

Figure 2 shows that sSBLIMP accuracy is almost chance rate for
all settings. This is consistent with findings from previous stud-
ies: even much larger SLMs also struggle with sSBLIMP [2,25].
Still, since SBLIMP is a suite of 12 distinct tasks, some of them



sBLIMP pros-syntax
.60 .64 .63 .66 .61 .61 .63 .62

716078173 72 69 71 69|

word 48
N=200
syllable 8
N=120 8

phoneme -8

N=60 ¥

29 210 211 212 213 21A 2'7 2'8 2'9 2;.0 2'11 z;.Z 253 21‘\ 27 ZE 29 210 211 212 213 214 27 25 2'9 210 211 2;.2 2;.3 2'14 27 28 29 210 211 212 213 214
clusters (K) clusters (K) clusters (K) 0.45

clusters (K) clusters (K)

sWUGGY pros-lexical

.46 .45 45 46 46 46Q.
.61 .64 .65 .67 .69 .68 .
.61 .63 .62 .65 .68 .66 .

Figure 4: Results of variable segmentation on phoneme, syllable, and word levels. For comparison, we show the fixed width segmenta-
tion results of which N is the same as median of the distribution of variable segmentation.

0.75

ellipsis quantifiers

0.70

. 0.65
2

3 0.60
£
o0
Q
b

0.55

0.50

27 28 29 210 211 212 213 214 28 29 210 211 212 213 214
clusters (K) clusters (K) 0.45
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v Anne’s doctor cleans one important book and
Stacey cleans a few.

ellipsis X Anne’s doctor cleans one book and Stacey
cleans a few important.
quantifiers v No boy knew fewer than six guys.

X No boy knew at most six guys.

Figure 5: sBLIMP accuracies split by task type. We show two
results (ellipsis and quantifiers) which display unique tendency.

might be solvable to some extent. We split the accuracy accord-
ing to the task and found that it is actually the case. We show
two examples in Figure 5: “ellipsis” and “quantifiers”. “Ellip-
sis” tests the possibility of omitting expressions from the sen-
tence. “Quantifiers” assesses whether the quantifier is placed in
the right position. The results suggest that the best accuracy for
both tasks is significantly above chance. Notably, the optimal
settings are unique for these tasks: they are located in the vicin-
ity of (40, 2®) for ellipsis and (160, 2'?) for quantifiers. This
tendency is clearly different from other benchmarks shown in
Figure 2. This finding highlights the importance of combining
different types of tokens to enhance SLU, which supports pre-
vious studies [3,26].

5.3. Effect of Variable Segmentation Width

While we have discussed the results of fixed-width segmenta-
tion, it is natural to segment speech into variable-width seg-
ments based on linguistic units, such as phonemes, syllables,
and words. Therefore, we trained SLMs on the variable seg-
mentation predicted by unsupervised segmentation methods.
Although previous studies have partially attempted this ap-
proach [14-16], our goal is to investigate how different levels
of linguistic units influence SLM performance under the com-
parative framework. Also, since variable segmentation poses
additional computation costs, we aim to assess whether it is

beneficial by comparing it against the fixed-width setting.

We used UnsupSeg [27], Sylber [16], and GradSeg [28]
for segmenting speech into phoneme, syllable, and word units,
respectively. Similar to the fixed-width segmentation setting,
we applied mean pooling to variable-width representations. To
compare against fixed-width segmentation settings, we com-
puted medians of each segmentation width distribution®. The
medians for phoneme, syllable, and word segmentation were
60 ms, 120 ms, and 200 ms, respectively.

Figure 4 shows comparative results of fixed and variable
segmentation settings*. We observe the positive effect of vari-
able segmentation in limited settings: syllable segmentation on
sBLIMP and pros-syntax. Overall, the accuracies were com-
parable to those of fixed-width segmentation, even significantly
impaired in the word segmentation settings. As suggested in
[14], inaccurate segmentation may cause performance degrada-
tion. Considering the computational cost of unsupervised seg-
mentation, it might be more preferable to use fixed-width seg-
mentation when training SLMs. On the other hand, previous
studies suggest learning syllable-level representations and us-
ing them instead of raw HuBERT representations for training
SLMs, showing impressive performance in SLU tasks [15, 16].
Whether fixed or variable settings, future work could explore
the benefits of learning segment-level representations for SLMs
within our comparative experimental framework.

6. Conclusion

In this research, we explored the effect of speech tokeniza-
tion on the SLU capabilities of SLMs. We conducted mul-
tiple speech tokenizations based on the combination of the
fixed/variable segmentation and the cluster size. Our experi-
ment on fixed-width segmentation suggests the positive effect of
moderately coarse segmentation width and bigger cluster size,
which contributes to a reduction in both training data size and
runtime. We find that the optimal tokenization settings vary
across benchmarks, highlighting the importance of combining
multiple tokens for further performance of SLMs. We demon-
strate that variable-width segmentations basically do not show
a clear advantage over fixed-width segmentations. While we
conducted a comprehensive set of experiments on speech tok-
enization, the exact reasons why certain settings are optimal for
each benchmark remain unclear. Additionally, our focus was on
SLU tasks, and we did not explore other areas such as speech
synthesis or speech continuation. We leave these explorations
for future work.

3Since the distributions of segment width have a long tail, we used
median instead of average as a representative value.
#We additionally trained SLMs on N = 60 setting for comparison.
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