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Abstract
In text-to-audio (TTA) research, the relevance between in-

put text and output audio is an important evaluation aspect. Tra-
ditionally, it has been evaluated from both subjective and ob-
jective perspectives. However, subjective evaluation is costly
in terms of money and time, and objective evaluation is un-
clear regarding the correlation to subjective evaluation scores.
In this study, we construct RELATE, an open-sourced dataset
that subjectively evaluates the relevance. Also, we benchmark
a model for automatically predicting the subjective evaluation
score from synthesized audio. Our model outperforms a con-
ventional CLAPScore model, and that trend extends to many
sound categories.
Index Terms: text-to-audio, human evaluation, CLAPScore,
environmental sound synthesis

1. Introduction
Research on text-to-audio (TTA), which is a technology to au-
tomatically synthesize an audio sample from text, such as “a
dog barking behind a human speech,” is attracting attention [1].
TTA has much potential, such as generating background sounds
and sound effects for media contents [2] and creating audio en-
vironments in virtual reality.

TTA is evaluated from both subjective and objective per-
spectives. Subjective evaluation of TTA can be broadly divided
into audio quality and relevance. The former is an evaluation
of whether the synthesized audio samples are of high quality,
while the latter is of assessment of the extent to which the syn-
thesized audio samples reflect the content of the input text. Re-
cent TTA models synthesize high-quality audio samples but of-
ten omit content from the input text [3]. Therefore, we focus
on the subjective evaluation of relevance. On the other hand,
this requires time and money, and it is impossible to compare
scores in different listening tests. Therefore, realizing an objec-
tive evaluation metric that is highly correlated to human subjec-
tivity is an important research topic.

This problem is not limited to TTA but is prevalent in vari-
ous generative tasks. To address this issue, supervised machine
learning methods have been proposed in speech synthesis and
image generation to automatically predict subjective evaluation
scores from synthesized outputs [4, 5]. These methods train a
machine learning model from paired data of synthesized out-
puts and subjective evaluation scores, enabling the prediction
of subjective evaluation scores for unseen synthesized outputs.
This approach holds promise for application in TTA to sim-
plify evaluation. Furthermore, the subjective evaluation scores
of synthesized audio tend to exhibit significant variance among
evaluators and synthesized outputs [6, 3]. When predicting sub-
jective evaluation scores for TTA, it is necessary to investigate
and consider the influence of listener, audio, and text attributes.
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Figure 1: Overview of this study.

The contributions of our paper are illustrated in Figure 1.
We construct an open-source dataset, which is called RE-
LATE (RELevance score on Audio and TExt), consisting of
synthesized audio samples and relevance scores1. The collec-
tion of scores for synthesized and original audio samples can be
expected to be used as a screening method when large amounts
of data for TTA are obtained from the internet. The dataset
covers three attributes regarding 1) listener, 2) synthesized au-
dio, and 3) text, and in this study, we investigate the influence
of these attributes on subjective evaluation scores. Furthermore,
we train a model using the constructed dataset to predict the rel-
evance between text and audio samples and conduct benchmark
analysis. The results show that our model outperforms CLAP-
Score [7], and that trend extends to many sound categories.

2. Related work
In the field of speech synthesis, a method for predicting subjec-
tive scores on the naturalness of synthesized speech has been
proposed. The VoiceMOS Challenge [4], which is an interna-
tional competition to assess the performance of automatic sub-
jective score prediction, has also been held with a shared dataset
of synthesized speech and subjective scores. Some prediction
models have been proposed [8], and the self-supervised learn-
ing (SSL) models (e.g., wav2vec 2.0 [9], WavLM [10]) are of-
ten used as a module to extract speech features for the subjective
score prediction. In this study, we make use of these ideas and
construct a shared dataset for TTA, as well as build an SSL-
based benchmark model. Furthermore, we analyze the factors
contributing to the variance in subjective evaluation scores.

In the evaluation of TTA, some objective evaluation met-
rics have been proposed for both overall audio quality (OVL)
and relevance to the text input (REL), and their correlation with
subjective evaluation scores has been investigated. Regarding
OVL, Deshmukh et al. proposed a prediction method using
CLAP [11]. Similarly, Tjandra et al.’s method predicted the val-

1https://github.com/sarulab-speech/RELATE
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Table 1: Questionnaire for listener attributes.
ID Question Options
Q01 Age ≤20, 21–30, . . . , 61≤
Q02 Gender M, F, NBi
Q03 How many times have you participated

in ratings of audio samples?
0, 1, . . . , 5≤

Q04 When did you last participate in other
ratings of audio samples?

Never, ≤1 month, . . .

Q05 On average, how many times have you
heard an audio repeatedly?

1, 2, . . . , 5≤

Q06 What type of audio device did you use? Headphone, Earphone,
Others

Q07 Was the surrounding environment quiet
during the ratings of audio samples?

Quiet, . . . , Noisy

Q08 How difficult were the evaluations? Easy, . . . , Difficult
Q09 Do/did you work in the field of speech or

audio technology?
Yes, No

Q10 Nationality EU, NA, ...
Q11 Mother country EU, NA, ...
Q12 Place of residence EU, NA, ...

ues of subdivided evaluation axes of OVL 2. While these studies
can predict evaluation scores that correlate to some extent with
the subjective evaluation scores of OVL, they cannot be used
for the evaluation of REL, which indicates how well the content
of the input text is reflected.

Regarding REL, Huang et al. proposed an unsupervised
method called CLAPScore [7]. It calculates the cosine similar-
ity between the input text and the synthesized audio using a pre-
trained CLAP model. It is unclear what the correlation between
the CLAPScore and the REL subjective evaluation scores. Al-
though there is a difference between unsupervised and super-
vised learning, this method should be compared with our con-
structed benchmark.

3. Creation of dataset
3.1. Overview of dataset
Our dataset consists of the following contents.
• Text–audio pairs. Both original and synthetic audio samples

are included.
• Subjective evaluation scores. Three metrics of 11-point

scores for each text–audio referring to the DCASE 2024
Challenge Task 73.

– REL score. The overall relevance of the text and audio.
– Inclusion of sound event (IS) score. The extent to which

the sound events described in the text are included in the
audio.

– Order of sound event (OS) score. The degree of match-
ing between the time series of sound events described in
the text and the audio.

• Listener attributes. Listener ID, age, gender, nationality,
birthplace, residence, and experience of audio evaluation. Ta-
ble 1 shows the questions and options of listener attributes.

3.2. Collecting subjective evaluation scores
We collected subjective scores for each text–audio sample. For
original audio samples, 1,000 pairs, including 500 pairs with
words indicating the order of sound occurrence, i.e., “before,”

2A. Tjandra, Y.-C. Wu, B. Guo, J. Hoffman, B. Ellis, A. Vyas, B.
Shi, S. Chen, M. Le, N. Zacharov, and others, “Meta Audiobox Aes-
thetics: Unified Automatic Quality Assessment for Speech, Music, and
Sound,” arXiv preprint arXiv:2502.05139, 2025.

3https://dcase.community/challenge2024/
task-sound-scene-synthesis

Table 2: Explanations of each score in subjective evaluations.
Metric Score Instruction

REL

0 Does not match at all.
2 Has significant discrepancies.
5 Has several minor discrepancies.
8 Has a few minor discrepancies.

10 Matched exactly.

IS

0 All sound events are clearly missing.
2 Most of the sound events seem to be missing.
5 About half of the sound events seem to be missing.
8 Most of the sound events seem to be included.

10 All sound events are clearly included.

OS

0 All sound events in the audio clearly occurred in the wrong order.
2 Most sound events in the audio occurred in the wrong order.
5 About half of the sound events in the audio occurred in the correct order.
8 Most sound events in the audio occurred in the correct order.

10 All sound events in the audio clearly occurred in the correct order.

Table 3: Statistics of RELATE dataset.
REL IS OS

Train Test Train Test Train Test
Evaluations 9,963 7,797 7,641 5,865 4,017 2,943
Audio–text pairs 2,862 2,598 2,649 2,334 1,281 1,185
Audio duration [s] 28,806 26,129 26,654 23,476 12,880 11901
Listeners 1,085 873 864 635 714 525

“after,” ‘then,” or “followed by,” selected on the basis of the
conventional study [12] and 500 pairs without such words, were
randomly selected from each of the AudioCaps training and test
datasets [13]. Synthesized audio samples were obtained us-
ing the open-sourced pretrained TTA models: AudioLDM [14],
AudioLDM2 [15], Tango [16], and Tango2 [17]. The texts of
original audio samples are used as input to these TTA models.
For each text, two synthesis models are selected and synthe-
sized. Furthermore, referring to [18], we presented explanations
for each score shown in Table 2 to minimize score variations
among listeners. Listeners were presented with the audio and
text, and they answered each metric on an 11-point scale.

Each listener answered each metric after being presented
with a text–audio pair. Note that the REL score was obtained
through an independent experiment, separate from the IS and
OS score collection described later. In collecting IS and OS
scores, the same listeners conducted both evaluations.

In annotating IS scores, some text samples included words
indicating the order of sound events, such as “before” and “af-
ter.” Listeners were instructed to disregard the order of occur-
rence as long as the sound events described in the text were
present in the audio. In annotating the OS score, listeners were
instructed to score a “0” if the text did not represent the order of
sound occurrence and these scores were subsequently omitted
from our OS dataset.

3.3. Screening
To conduct screening to ensure data quality and the result of
evaluation, each evaluation set was intentionally designed to
include samples with low relevance between text and audio.
Original audio in AudioCaps is annotated with multiple sound
event labels in addition to the text describing the audio. Audio
samples with mismatched sound event labels were randomly se-
lected from the dataset, and these audio samples and texts were
paired and set as anchors.

Based on the answers for the anchors in the evaluation, we
screened listeners for training and test sets. For the training set,
we excluded listeners whose average anchor rating was “2” or
higher. For the test set, we excluded listeners whose average
anchor rating was “1” or higher to ensure high quality of col-
lected scores. Table 3 shows the statistics of our dataset after
the screening.



Table 4: Statistical significances (p < 0.05) among items and
of interaction between items of natural/synthetic audio samples
for REL scores. Check mark shows significant differences and
interaction.

Factor Among items Interaction
Sound event labels in text
Number of event labels
Number of top-level sound categories ✓ ✓
Sounds belonging to a category vs. sounds in other categories
Human sounds ✓
Animal ✓ ✓
Natural sounds ✓
Music ✓
Sounds of things
Source-ambiguous sounds
Channel, environment and background
Speech ✓
Text complexity
Number of words ✓ ✓
w/ temporal preposition vs. w/o ✓ ✓
Flesch Reading Ease ✓
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Figure 2: Boxplots of each aspect

Table 5: Distribution of training, validation, and test data.
AudioCaps Train Test
RELATE dataset Train Validation Test
Evaluations 9,963 3,897 3,900
Audio–text pairs 2,862 1,287 1,311
Audio duration [s] 28,806 12,960 13,169
Listeners 1,085 712 726

4. Analysis of dataset
REL is the most commonly used metric in three metrics, and
we have conducted an analysis of REL. We focused on the REL
and analyzed the subjective evaluation dataset in the follow-
ing aspects: audio attribute and text attribute. Furthermore, we
investigated whether these trends differ between original and
synthesized audio samples. A stricter screening than those in
the dataset creation process was performed in this analysis to
reduce noise in the evaluation and to acquire meaningful ten-
dency. In addition to excluding listeners with an average anchor
rating of “2” or higher, we added the exclusion of listeners with
an average original audio rating of “6” or lower to avoid lis-
teners who rated everything low. Then, we removed listeners
whose ratings had the lowest 5% entropy of all listeners.

We conducted nonparametric tests: Mann–Whitney U test
[19] for two-group means, Kruskal–Wallis test [20] for 3+-
group means, and Steel–Dwass test [21] for multiple compari-
son. In addition, aligned rank transform (ART) analysis of vari-
ance (ANOVA) [22], a method for nonparametric data, was used
to examine the interactions of two factors.

In TTA, audio attributes and text attributes are important.
Original audio samples of AudioCaps have labels indicating the
type of sound. This label is reflected in the text, which in turn
is reflected in the synthesized audio. Then, those labels can be

Listener ID
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Figure 3: Overview of proposed REL prediction model

Table 6: Results of subjective evaluation prediction.
Method MSE ↓ LCC ↑ SRCC ↑ KTAU ↑
CLAPScore w/ MS-CLAP 0.159 0.208 0.181 0.124
CLAPScore w/ LAION-CLAP 0.082 0.375 0.351 0.242
Ours 0.073 0.385 0.383 0.265
Ours w/o CBL 0.069 0.377 0.374 0.259

applied to synthesized audio samples as audio attributes. Text
attributes are characterized by their complexity. We examined
our dataset using audio attributes and text attributes in the fol-
lowing three aspects.
• Sound event labels. The number of sound event labels and

the number of top-level categories.
• Sounds belonging to a category vs. sounds in other cat-

egories. Sounds belong to a top-level category and others,
e.g., human sounds vs. others.

• Text complexity. Number of words in the text, with or with-
out temporal prepositions, and the Flesch Reading Ease score
[23], which indicates the readability of English text.

4.1. Analysis from sound event label
Upper part of Table 4 shows which audio factors had statisti-
cally significant differences and which audio factors interacted
with original/synthetic audio samples. It shows that top-level
categories affect the evaluation score. It is assumed that the
kind of top-level categories affects both the difficulty of human
evaluation and that of synthesis. Specifically, belonging to the
“Animal” category shows both of statistically significant differ-
ences and interaction. Figure 2(a). shows that synthesized audio
in the “Animal” category had the lower score than in others. It
is assumed that synthetic models have difficulty in synthesizing
animal sounds.

4.2. Analysis from texts
Lower part of table 4 shows which text factors had statisti-
cally significant differences and which text factors interacted
with original/synthetic audio samples. In particular, number of
words and inclusion of temporal preposition show both of statis-
tically significant differences and interaction. Figure 2(b) shows
that the score decreases as the number of words increases, and
interaction effects indicate that the more words there are, the
less successful the synthesis is. This can be thought of as the
greater the number of words, the more difficult the subjective
evaluation or synthesis becomes. Figure 2(c) shows that the
score decreases for texts that include time-series information.
The interaction effects indicate that the synthesis is not success-
ful when time-series information is included. It is inferred that
the synthetic models are not trained with attention to time-series
information.

5. Benchmarking prediction model
5.1. Model architecture
We trained a model to predict the REL score between audio and
text. Figure 3 shows the model. The audio x and text w are



Table 7: Results of subjective evaluation prediction for each top-level category.
Source- Channel,

Method
Human

Animal
Natural

Music
Sounds ambiguous environment

Speech
sounds sounds of things sounds and background

CLAPScore w/ MS-CLAP 0.181 0.254 0.232 0.310 0.126 0.339 0.170 0.174
CLAPScore w/ LAION-CLAP 0.349 0.438 0.311 0.186 0.266 0.452 0.338 0.339
Ours 0.435 0.411 0.353 0.599 0.380 0.447 0.462 0.445

input into the pretrained audio and text encoders, respectively:
V = AudioEnc (x) ∈ RF×T , o = TextEnc (w) ∈ RD. Here,
F , T , and D denote the number of dimensions of audio fea-
tures, time length, and number of dimensions of text features,
respectively. For audio and text encoders, we used pre-trained
BYOL-A [24] and RoBERTa4, respectively. Then, o and C-
dimension listener-embedding vector l ∈ RC are duplicated in
the time direction. Listener embeddings enhance prediction ac-
curacy by modeling individual listener preferences [25]. The
feature M ∈ R(F+C+D)×T obtained by concatenating the ob-
tained feature sequences V and the temporally duplicated l,o in
the dimension direction is input to the bidirectional long short–
term memory (BLSTM) [26]. Finally, by passing the output Z
from the BLSTM through two linear layers and the activation
function ReLU, the REL score is predicted.

5.2. Loss function
The training objective is a weighted sum of two functions,
both evaluating the difference between the ground truth and
predicted scores: the clipped mean squared error (MSE) loss
Lreg [27] and contrastive loss Lcon [8]. Class-balanced loss
(CBL) [28] was introduced to reduce the influence of data
bias. We round up REL scores to the nearest integer. Let
ly ∈ [1, 2, ..., 10] be the integer-converted version of REL score
y, and nly be the frequency of class ly . Then, Ey = 1−βcbl

1−β
nly
cbl

is a value that decreases as nly increases. Here, βcbl ∈ [0, 1]
is a hyperparameter. Then, CBLreg and CBLcon are obtained
by applying Ey to each loss function. The final loss function is
obtained by summing the two loss functions with weights β and
γ : L = βCBLreg + γCBLcon.

5.3. Experimental setup
Table 5 shows the distribution of training, validation, and test
data of REL scores in the RELATE dataset. For model train-
ing, we used the training data of REL scores. For validation
and evaluation, the test data of REL scores was divided into
two subsets so there was no overlap between audio samples
and texts. The prediction score was normalized to the range
of [−1, 1]. In addition to each listener, score prediction was
performed for the average listener, whose score is the average
of the scores of all listeners [25]. During inference, the model
predicted the average listener’s score. We empirically chose
τ = 0.25 for clipped MSE loss, α = 0.1 for contrastive loss,
βcbl = 0.99 for CBL, and β = 1.0 and γ = 0.5 for the weights
of the two loss functions. The batch size was 12, and gradi-
ent accumulation was performed every two steps. Adam [29]
(β1 = 0.9, β2 = 0.999) was used as the optimizer with an
initial learning rate of 2.0× 10−5. Also, learning rate schedul-
ing with linear warm-up and linear decay was used. The total
number of training steps was 15,000, with up to 4,000 warm-up
steps. The optimal model was selected referring to Spearman’s
rank correlation coefficient (SRCC) calculated from the valida-

4Y. Liu, “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

tion set.

We used CLAPScore for the comparison. As the CLAP
model used to calculate CLAPScore, LAION-CLAP [30] and
MS-CLAP [31] were used. For the evaluation of the prediction
scores of each model, we used MSE, linear correlation coef-
ficient (LCC), SRCC, and Kendall rank correlation coefficient
(KTAU) referring to the VoiceMOS Challenge [4].

5.4. Results and discussion

Table 6 shows the results for each evaluation metric. The pro-
posed method outperforms both MS-CLAP and LAION-CLAP
in all metrics. It can be seen that the output of the proposed
method is closer to the human subjective evaluation value than
the similarity score calculated from MS-CLAP and LAION-
CLAP. We also found that CBL is effective.

To capture trends in the strengths and weaknesses of subjec-
tive evaluation score prediction, SRCCs of prediction and sub-
jective evaluation values were calculated for each top category
and compared with the CLAPScore. Table 7 shows the results.
Our method outperformed LAION-CLAP and MS-CLAP for all
categories except two cases, “Animal” and “Source–ambiguous
sounds.” In particular, a large difference is observed for “Mu-
sic,” which may be because this method, compared with CLAP-
Score, reflects the tendency of subjective evaluation to recog-
nize and rate highly music, which has characteristics that are
very different from those of other sounds.

Further improvements could be made to the model struc-
ture. In the future, experiments using audio encoders other than
BYOL-A will be necessary. The quality of the audio encoder
is paramount, especially in the field of TTA, which deals with
many types of audio. Regarding the text encoder, explicitly en-
coding the units of sound events, rather than encoding the text
as it is, may be helpful for REL prediction. As for the input,
we believe that listener attributes help in predicting subjective
evaluation scores by providing modeling of the listener.

6. Conclusion
We constructed an open-source dataset consisting of synthe-
sized audio samples and relevance scores. From the analysis re-
sult, regarding audio attributes, people have different evaluation
tendencies for different types of sound, and there are sounds that
the synthesis model does not handle well. For text complexity,
we found that the longer the sentence, the lower the evalua-
tion value and the less successful the synthesis. Also, synthe-
sis from texts containing time series was poor. We also built
a baseline model for predicting the subjective evaluation score
of text–audio relevance in TTA. Our model outperformed the
conventional method, CLAPScore, and that trend extended to
many sound categories. For future work, we are considering the
analysis and prediction of IS and OS scores, the development of
a dataset that focuses on audio attributes and text attributes, and
the improvement of the prediction model by introducing other
encoders or inputs.
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E. Rahtu, J. Heikkilä, and S. Satoh, “Toward verifiable and repro-
ducible human evaluation for text-to-image generation,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 14 277–14 286.

[19] H. B. Mann and D. R. Whitney, “On a test of whether one of
two random variables is stochastically larger than the other,” The
annals of mathematical statistics, pp. 50–60, 1947.

[20] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion
variance analysis,” Journal of the American statistical Associa-
tion, vol. 47, no. 260, pp. 583–621, 1952.

[21] R. G. Steel, “A multiple comparison rank sum test: treatments
versus control,” Biometrics, pp. 560–572, 1959.

[22] J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins, “The
aligned rank transform for nonparametric factorial analyses using
only anova procedures,” in Proceedings of the SIGCHI conference
on human factors in computing systems, 2011, pp. 143–146.

[23] R. Flesch, “A new readability yardstick.” Journal of applied psy-
chology, vol. 32, no. 3, p. 221, 1948.

[24] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino,
“BYOL for Audio: Exploring pre-trained general-purpose audio
representations,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 31, pp. 137–151, 2022.

[25] W.-C. Huang, E. Cooper, J. Yamagishi, and T. Toda, “LDNet:
Unified listener dependent modeling in MOS prediction for syn-
thetic speech,” in Proc. ICASSP. IEEE, 2022, pp. 896–900.

[26] A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional
LSTM networks for improved phoneme classification and recog-
nition,” in International conference on artificial neural networks.
Springer, 2005, pp. 799–804.

[27] Y. Leng, X. Tan, S. Zhao, F. Soong, X.-Y. Li, and T. Qin, “MBNet:
MOS prediction for synthesized speech with mean-bias network,”
in Proc. ICASSP, 2021, pp. 391–395.

[28] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-
balanced loss based on effective number of samples,” in Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 9268–9277.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015.

[30] Y. Wu, K. Chen, T. Zhang, Y. Hui, T. Berg-Kirkpatrick, and
S. Dubnov, “Large-scale contrastive language-audio pretraining
with feature fusion and keyword-to-caption augmentation,” in
Proc. ICASSP, 2023, pp. 1–5.

[31] B. Elizalde, S. Deshmukh, M. A. Ismail, and H. Wang, “CLAP:
Learning audio concepts from natural language supervision,” in
Proc. ICASSP, 2023, pp. 1–5.


	 Introduction
	 Related work
	 Creation of dataset
	 Overview of dataset
	 Collecting subjective evaluation scores
	 Screening

	 Analysis of dataset
	 Analysis from sound event label
	 Analysis from texts

	 Benchmarking prediction model
	 Model architecture
	 Loss function
	 Experimental setup
	 Results and discussion

	 Conclusion
	 Acknowledgements
	 References

