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1 Introduction
Human speech contains not only verbal but also

nonverbal expressions like laughter, sobbing, and

scream, etc. [1, 2], which can effectively convey

internal affects [3, 4] of speakers in various lan-

guages and cultures [5]. Although recent advances

in speech synthesis are able to synthesize natural

verbal speech that is indistinguishable from human

speech [6, 7, 8, 9], the progress in synthesizing non-

verbal expressions is limited due to the lack of both

data and technologies. In this work, we focus on a

typical but important task in nonverbal-expression

synthesis: laughter synthesis. Being able to synthe-

size laughter can intuitively improve the expressive-

ness and authenticity of a speech synthesis system.

Such systems can be applied, for example, in virtual

agents to smooth communication with users [10].

We present a method for laughter synthesis using

pseudo phonetic tokens on a large-scale in-the-wild

laughter corpus. In the proposed method, firstly a

clustering model based on k-means [11] is trained on

features extracted from the laughter utterances by

a self-supervised learning (SSL) model called Hu-

BERT [12]. The clustering model is then used to

transcribe each utterance into a sequence of discrete

tokens containing the phonetic information of the

original laughter, which we call pseudo phonetic to-

kens (PPTs). A Text-to-speech (TTS) model is then

trained by regarding PPTs as text inputs to synthe-

size laughter. Furthermore, we show it is possible

to train a token language model (tLM) on the PPTs

to enable unconditional laughter synthesis. Exper-

imental results demonstrate that: (1) the proposed

method significantly outperforms a baseline method

that uses phonemes to represent laughter; (2) the

proposed method can generate natural laughter un-

conditionally with the assistance of tLM. The con-

tributions of this work are summarized as follows:

• We propose a large-scale in-the-wild Japanese

laughter corpus. This corpus is, to our best

knowledge, currently the largest laughter cor-

pus that is suitable for laughter synthesis.

• We propose a method for laughter synthesis us-

ing pseudo phonetic tokens as the representa-

tion of laughter.

• We propose to train a token language model to

generate PPTs and synthesize laughter uncon-

ditionally.

• We conduct comprehensive objective and sub-

jective experiments to demonstrate the pro-
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Fig. 1: Data-collection process for the proposed cor-

pus.

posed method can synthesize natural laugh-

ter that is significantly better than a baseline

method.

We publicate the proposed corpus1 and the code im-

plementation2 of the proposed method.

2 Laughter data collection
We aim to collect large-scale in-the-wild laugh-

ter utterances that are suitable for laughter syn-

thesis. The general data-collection process is illus-

trated in Figure 1. We first use several lists of cast-

ers and YouTubers obtained from Wikipedia, e.g.

en.wikipedia.org/wiki/List_of_YouTubers, to

crawl candidate videos during June 2022 by search-

ing the names in the list on YouTube, which results

in about 10k videos. Using the lists ensures we only

collect human speech instead of others like animal

sounds. Second, we use an open-sourced pretrained

laughter detection model (github.com/jrgillick/

laughter-detection) to discover videos that pos-

sibly contain laughter, which results in about 1500

videos. However, we find that many of the detected

videos include multi-speaker laughter or speech-

laugh which are not suitable for synthesis. There-

fore, we further conduct a listening test with crowd-

sourcing to label the detected videos. Specifically,

we request about 1500 workers to label the videos

with three categories: (1) single-speaker laugh-

ter; (2) multi-speaker laughter; (3) others including

speech laugh.

After labeling, we manually segment laughter ut-

terances from those videos that have at least one

“single-speaker laughter” label. Note that, many

videos contain background noises, and we only select

those with non-speech noise to simplify the denois-

1sites.google.com/site/shinnosuketakamichi/
research-topics/laughter_corpus

2github.com/Aria-K-Alethia/laughter-synthesis
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Fig. 2: Left: laughter representations used in this

work; Right: architecture of the TTS model. For the

baseline method an additional alignment module is

used.
ing step. Besides, we discard non-Japanese videos

in this step. Finally, to reduce noises in the utter-

ances, we use a source separation model called De-

mucs3, which is a powerful source separation model

based on DNNs, to extract the vocals from the

videos. Specifically, we use the pretrained Demucs

v3 (“hdemucs_mmi”) model [13] since we find it is

more stable than the latest v4 model. The final

corpus contains 7489 utterances of single-speaker

laughter from 470 speakers. The total duration of

the corpus is about 3.5 hours.

3 Laughter synthesis using pseudo
phonetic tokens

3.1 The baseline method
As illustrated in the bottom half of Figure 2

(a), we use a pretrained multilingual ASR model

based on wav2vec 2.0 [14] to transcribe laughter into

phoneme sequences. We then adopt FastSpeech2 [8]

to synthesize mel-spectrograms from the phoneme

sequences. The original FastSpeech2 relies on an

external alignment tool to get the duration informa-

tion for each phoneme, but it is difficult to find an

off-the-shelf alignment tool for the standard Inter-

national Phonetic Alphabet (IPA) used by the mul-

tilingual ASR model in the baseline method. There-

fore, we use an unsupervised alignment module in-

spired by Glow-TTS [7] that can be jointly trained

with the TTS model. The module can be efficiently

trained in an unsupervised manner using the con-

nectionist temporal classification (CTC) loss [15].
3.2 Pseudo phonetic tokens
The proposed PPT is inspired by generative spo-

ken language modeling [16, 17], which originally uses

SSL models to discretize speech to do TTS in a text-

less manner. In this work, we further adapt this

idea into nonverbal laughter. As shown in the top

half of Figure 2 (a), the waveform is first fed into

HuBERT [12] to convert it into continuous sequen-

3github.com/facebookresearch/demucs

tial features. Then, a k-means model [11] is trained

upon the features, which can be used to convert

the continuous features into discrete tokens (clus-

ter indices). The obtained PPTs are then fed into a

TTS model to synthesize laughter. The TTS model

has all components used in the baseline method ex-

cept for the alignment module. This is because

the running length of each PPT can be regarded

as its duration. For example, for a PPT sequence

[21, 21, 34, 21], its duration sequence is [2, 1, 1]. Fol-

lowing original GSLM [16], we remove sequential

repetitions (the sequence in the above example be-

comes [21, 34, 21] after removing) in all PPT se-

quences before inputting them to the phoneme en-

coder.
3.3 Token language model
PPT can be regarded as a symbolic representation

of laughter. Thus, it is possible to train a token

language model (tLM) on the PPTs of the proposed

corpus. After training, one can generate laughter

unconditionally by sampling from tLM.

4 Experiments
4.1 Setup
We downsample all waveforms into 16 kHz. Since

the fps of HuBERT is 50, we set hop length to 320

to extract all acoustic features including pitch and

mel-spectrograms. The pitch information of each

utterance is extracted with WORLD vocoder [18].

We exclude utterances that are too long (over

20 s) or cannot get pitch values by the WORLD

vocoder, which results in 7290 utterances. We

split these utterances into train/validation/test sets

with 7110/90/90 utterances, respectively. The test

set consists of 30 speakers with 3 utterances per

speaker, which are randomly selected from the

speakers who have at least 10 utterances in the pro-

posed corpus.

We use a pretrained multilingual wav2vec

2.0 model (XLSR) [14] fine-tuned on Common-

Voice4 [19] as the multilingual ASR model used in

the baseline method. The resulting transcriptions

have 87 unique symbols in IPA.

We use the pretrained “hubert-base-ls960”

model5 to extract the continuous sequential features

used in the proposed method. We set the cluster

number of k-means to 200, which means that there

are 200 different PPTs used in the TTS model. We

train several k-means models; most of them converge

in about 250 iterations. After training, we convert

all utterances into their PPT representations.

We use the same architecture of the original Fast-

Speech2 [8]. The dimension of the speaker embed-

ding is set to 256. For the alignment module in the

baseline method, we use exactly the same training

4huggingface.co/facebook/wav2vec2-xlsr-53-espeak-
cv-ft

5huggingface.co/facebook/hubert-base-ls960



strategy used in RAD-TTS [20]. For all TTS mod-

els, the batch size is set to 16. Adam [21] is used

as the optimizer with a scheduled learning rate pro-

posed in [22]. All models converge in about 200k

steps.

We use HiFi-GAN [9] as the vocoder to con-

vert mel-spectrograms into time-domain waveforms.

As the hop length of the officially released pre-

trained models is not 320, we train a new HiFi-GAN

vocoder from scratch on a multi-speaker Japanese

corpus [23]. We use the official script6 to train the

model.

We use fairseq [24] to train tLMs. We use the

“transformer_lm” architecture, which is based on

a 6-layer transformer [22]. Adam [21] is used as

the optimizer with an initial learning rate of 5e-4.

The batch size is set to 16. All tLMs converge with

about 30 epochs. After training, we generate 90 se-

quences of PPTs unconditionally for each tLM. The

temperature is set to 0.7. These sequences are then

inputted into the TTS model to synthesize laughter

with the same speaker setting of the test set.
4.2 Objective metrics
We use several objective metrics computed on the

test set or generated sequences of PPTs of laughter

to evaluate the TTS models and tLMs:

• Mel-cepstral distortion (MCD) computed

with dynamic time warping (DTW).

• F0 root mean square error (F0-RMSE)

computed with DTW.

• Perplexity (PPL) defined as the normalized

inverse probability on the test set of the tLM.

• Self-BLEU [25] defined as the average value

of the n-gram (4-gram in this work) BLEU

scores [26] between one generated sentence and

the rest generated sentences for all generated

sentences.

Here MCD and F0-RMSE reflect the quality of the

synthesized laughter; PPL and Self-BLEU reflect

the performance of the tLM and the diversity of

the generated sentences, respectively. In particular,

since each tLM has a unique set of PPTs, in this

work we propose to use a normalized version of Self-

BLEU that is defined as the ratio of the Self-BLEU

of the generated sentences to the Self-BLEU of the

test set: Self-BLEU = Self-BLEU/Self-BLEUgt.

This metric has a value between [0, 1], and can re-

flect how diverse the generated sentences are com-

pared to the GT sentences.
4.3 Laughter synthesis
4.3.1 Layer selection of HuBERT
As the output of each layer of HuBERT is possible

to be used as the features for PPTs, we train 12

proposed models and compute the objective metrics

to select the best layer. The result is illustrated in

6github.com/jik876/hifi-gan
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Fig. 3: Objective performance of the proposed

method using the output of different layers of Hu-

BERT as the feature for PPTs. Negative Self-BLEU

scores are shown for the ease of comparison.

Table 1: Performance of all methods in the evalua-

tions of laughter synthesis. Bold indicates the best

score with p < 1e-5 comparing to Baseline.
Model MCD(↓) F0-RMSE(↓) MOS(↑) SMOS(↑)
GT - - 3.73 -

HiFi-GAN 6.68 53.70 3.31 4.74
Baseline 16.59 117.65 1.25 1.20

Baseline GT 10.74 85.69 - -
Proposed-L5 11.53 80.28 3.00 3.07
Proposed-L8 11.69 82.81 2.98 3.17
Proposed-L12 11.41 81.43 2.96 3.22

Figure 3. Hereafter we use L{1, 2, ..., 12} to denote

the proposed method using the corresponding layer

of HuBERT for simplicity. It can be seen that the

performances of the TTS models (left) and the tLMs

(right) are not consistent. Specifically, L12 has the

best performance among the TTS models, but L8

has the best performance among the tLMs. Besides,

L5 has good performance in all metrics. Therefore,

we use L5, L8, and L12 in the following evaluations.

We also tried the proposed method with a fewer or

larger cluster number but found no improvements in

the preliminary experiments.
4.3.2 Comparison to the baseline
Next, we compare the proposed method to the

baseline method. In addition to the objective met-

rics, we also use subjective mean opinion score

(MOS) and similarity MOS (SMOS) to evaluate the

naturalness and similarity of the synthesized laugh-

ter, respectively.

All results are shown in Table 1. First, the base-

line method has poor performance in both the ob-

jective and subjective evaluations. To verify if this

is because the model fails to learn from the in-

putted phonemes, we further use GT acoustic fea-

tures (pitch and energy) to synthesize the test ut-

terances. The corresponding model is denoted as

“Baseline GT” in Table 1. It can be seen that the

performance becomes comparable to the proposed

method, which implies that the laughter representa-

tion makes the performance of the baseline method

bad. Second, it can be seen that the 3 proposed

models have significantly better performance than

the baseline method in all metrics, which demon-

strates the effectiveness of the proposed method us-

ing PPTs as the representation for laughter. Finally,

we observe that L5 has the best naturalness and L12

has the best speaker similarity, which is consistent



Table 2: Subjective performance of the proposed

method in the evaluation of unconditional laughter

generation. Bold indicates the best score with p <

1e-5.
Model MOS(↑) SMOS(↑)

Proposed-L5 3.11 2.65
Proposed-L8 2.80 2.59
Proposed-L12 3.06 2.59

with the results in objective metrics as both of the

two models have better objective performance than

L8.
4.4 Unconditional laughter generation
Finally we evaluate the performance of uncondi-

tional laughter generation with a MOS test and a

SMOS test. Given the poor performance of the base-

line method shown in the previous section, we only

use the three proposed models in this evaluation. 27

listeners join in the MOS test; each evaluates 33 ut-

terances of which the first 3 are dummy samples. As

a result, each utterance has 3 answers. The SMOS

test is conducted using exactly the same setting of

the MOS test.

The result is shown in Table 2. It can be seen that

generally L5 > L12 > L8. This is quite different

from the performance of tLMs shown in the right

side of Figure 3, in which L8 > L5 > L12. We

suppose this is because the quality of the synthesized

laughter is mainly determined by the performance of

the TTS models. However, it should be pointed out

that MOS and SMOS cannot evaluate the diversity

of the synthesized laughter subjectively. We leave

this as future work. Combining this result with the

result shown in Table 1, we conclude that layer 5 is

the best layer of HuBERT for PPTs used in laughter

synthesis.
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