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ABSTRACT

We propose a two-stage emotion-controllable text-to-speech
(TTS) model that can increase the diversity of intra-emotion
variation and also preserve inter-emotion controllability in
synthesized speech. Conventional emotion-controllable TTS
models increase the diversity of intra-emotion variation by
controlling fine-grained emotion strengths; however, such
models cannot control various prosodic factors (e.g., pitch).
While other methods directly condition TTS models on
intuitive prosodic factors, they cannot control emotions.
Our proposed two-stage emotion-controllable TTS model
extends the Tacotron2 model with a speech emotion recog-
nizer (SER) and a prosodic factor generator (PFG) to solve
this problem. In the first stage, we condition our model on
emotion soft labels predicted by the SER model to enable
inter-emotion controllability. In the second stage, we fine-
condition our model on utterance-level prosodic factors and
word-level prominence generated by the PFG model from
emotion soft labels, which provides intra-emotion diversity.
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Due to this two-stage control design, we can increase intra-
emotion diversity at both the utterance and word levels,
and also preserve inter-emotion controllability. The exper-
iments achieved 1) 51% emotion-distinguishable accuracy
on average when conditioning on soft labels of three emo-
tions, 2) average linear controllability scores of 0.95 when
fine-conditioning on prosodic factors and prominence, re-
spectively, and 3) comparable audio quality to conventional
models.

Keywords: Emotion-controllable speech synthesis, expressive speech
synthesis, controllable speech synthesis, text to speech,
speech emotion recognition

1 Introduction

Text-to-speech (TTS) models synthesize human-like speech which in-
cludes linguistic and paralinguistic information. The fast development
of deep learning models [12, 27, 28, 31, 37, 39] has made it possible
to synthesize understandable speech from a linguistic perspective. On
the other hand, synthesizing human-like speech with diverse paralin-
guistic information is not an easy task. The paralinguistic information
of human speech, such as emotion, is expressed by various types and
strengths of prosodic factors (e.g., pitch) [14, 29] or prominence (i.e.,
emphasis) [13, 43] at different levels. Even when the same words are
spoken with the same emotion, using slightly different prosodic factors
or prominence can cause listeners to have completely different percep-
tions of meaning and feeling. Therefore, it is important for the TTS
models to control not only emotion variations but also the variations of
prosodic factors or prominence on the basis of a given emotion. How-
ever, few TTS models are capable of synthesizing speech with such
diverse emotion variations as that of actual human speech.

The diverse emotion variations can be broadly separated into inter-
and intra-emotion variations. Inter-emotion variation primarily rep-
resents significant differences between emotions, while intra-emotion
variation represents minor differences within an emotion. Conventional
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Figure 1: Overview of the proposed model

emotional TTS models generate an inter-emotion variation by integrat-
ing various inter-emotion representations, such as explicit emotion la-
bels [18, 44] or implicit emotion embeddings [17, 21], into the TTS
models. Compared to inter-emotion variation, intra-emotion variation
yields richer emotion diversity. Subsequent studies generate an intra-
emotion variation by controlling a finer granularity, such as emotion
strength [19, 35, 44], which indicates the intensity of emotion. Such
models can increase the diversity of different emotion strengths but
not various prosodic factors (e.g., pitch), which are finer granularities
than emotion strength. Considering emotion strength can be formed
by various prosodic factors depending on different conditions (such as
gender), the inability to control prosodic factors limits the generation
of more diverse intra-emotion variation.

To synthesize speech with more diverse prosodic factors, studies
condition TTS models on implicit prosodic factors. Subsequent stud-
ies aim to disentangle certain implicit prosodic factors in unsupervised
manners by utilizing a reference encoder, a variational autoencoder
(VAE), and multi-head attention-based models [32, 40, 42] from ref-
erence audio. These implicit prosodic factors are further used to con-
dition the TTS models, which can increase the prosodic diversity in
speech. However, these implicit prosodic factors are not always dis-
entangled into desired ones, such as pitch, and energy. To solve such
a problem, other studies directly condition TTS models on intuitive
prosodic factors (e.g., mean of pitch) at utterance-level [26, 30] or
phoneme-level [38]. These models can increase intra-emotion diversity
but cannot control inter-emotions.
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In this paper, we propose a two-stage emotion-controllable TTS
model that can control both inter- and intra-emotion of synthesized
speech. In the first stage, we control the emotion of synthesized speech
by conditioning on emotion-soft labels. In the second stage, we fine-
condition utterance-level prosody factors and word-level prominence es-
timated on the basis of emotion soft labels (i.e., emotion posterior prob-
ability). The overview of the proposed model is shown in Fig. 1. The
evaluation results demonstrate that our model attains 51% emotion-
distinguishable accuracy on average which is promising despite using
only a narrative dataset. In addition, our model achieves average linear
controllability scores of 0.95 when fine-conditioning on prosodic factors
and prominence, respectively, which are comparable to the conventional
method [26].

The remainder of this paper is organized as follows. In Section 2,
we discuss work related to our study. In Section 3, we elaborate on the
proposed model by breaking it down into the speech emotion recognizer
(SER) and the prosodic factor generator (PFG), and the emotion-
controllable TTS models. In Section 4, we explain the experimental
setup consisting of data, preprocessing, model architecture, and train-
ing procedures. In Section 5, we first evaluate the performance of SER
and PFG models. Then we evaluate the controllability of emotional soft
labels and the linear controllability of prosodic factors and prominence,
respectively.

2 Related Work

2.1 Emotion-controllable TTS

To control emotion, previous studies commonly conditioned their TTS
models on explicit emotion labels [18, 22, 44] or implicit emotion em-
beddings [17, 21]. The explicit emotion labels were usually obtained
from emotion-labeled speech datasets [18, 44], or emotion-predictive
models [22]. The implicit emotion embeddings were generally trained
by learnable models, such as a speech emotion recognition model [21] or
a multi-head attention model [17]. To generate intra-emotion variation
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in speech, subsequent studies conditioned on not only emotion labels or
embeddings but also emotion strength, which is a finer granularity. The
emotion strength was obtained by an interpolation method between
emotion categories [35], a ranking function at utterance-level [44], or
phoneme-level [19]. These models that were conditioned on emotion
strengths can generate more diverse intra-emotion variation than the
models conditioned on emotion labels. However, emotion strength is
still not the smallest granularity to be controlled because it can be fur-
ther represented by various prosodic factors [14, 29] or prominence [13,
43].

2.2 Prosody-controllable TTS

To control prosodic factors, previous studies conditioned their TTS
models on prosodic factors using explicit prosodic factors or implicit
prosodic factor tokens. The former directly conditioned TTS models
on intuitive prosodic factors (e.g., pitch mean) on utterance-level [26,
30], or more fine-grained levels such as the phoneme-level [38]. On the
other side, the latter aimed to learn disentangled prosodic factor tokens
by training a reference encoder [32], a variational autoencoder [42],
or multi-head attention-based models [40] from reference audio. The
implicit methods generated more prosodic diversity than the explicit
methods. However, there was no guarantee that they could disentangle
these tokens into desired prosodic factors because the learned tokens
contained plenty of other paralinguistic information (e.g., speaker or
noise), which makes the disentanglement difficult. Meanwhile, both the
explicit and implicit methods were incapable of controlling emotion in
speech.

In addition to prosodic factors, Li et al. [20] condition their TTS
model on word/phoneme-level prominence (i.e., emphasis) to make syn-
thesized speech more diverse. The prominence that was used to con-
dition the TTS model was mainly formed by specific prosodic factors,
such as pitch, energy, and duration [33]. Because prominence is also
related to emotion [34] and contributes to intra-emotion diversity, we
also enable prominence control in this paper.
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2.3 Prediction of prosodic factors and prominence from emotion

There is a strong relationship between emotions and prosodic factors [1,
14, 29] or prominence [2, 13, 43]. Akçay et al. [1] reported on the
correlation between global statistics of prosodic factors including pitch,
energy, and emotion states. For example, the average pitch increases in
happy speech. Arias et al. [2] found that, in addition to prosodic factors,
local prominence is also correlated with emotion state. For example,
the intonation of happy speech usually increases at the end. Therefore,
various statistics of prosodic factors [1, 14, 29] and prominence [13,
43] are utilized to predict emotions by utilizing different discriminative
models.

However, few studies utilize emotion states to predict prosodic fac-
tors and prominence. Raitio et al. [26] predicted prosodic factors on
which the TTS model is conditioned, from only text by utilizing a long
short-term memory (LSTM) based module. Talman et al. [34] also pre-
dicted prominence from the text by utilizing BERT [9], a pre-trained
language model. In controllable TTS models, predicting prosodic fac-
tors and prominence which are used for controlling without considering
emotion will result in a limited variety in synthesized speech. Therefore,
in our proposed emotion-controllable TTS model, we predict prosodic
factors and prominence from both text and emotion, which can increase
diversity in synthesized speech.

3 Proposed Method

We propose a two-stage emotion-controllable TTS model that enables
conditioning on emotion soft labels in the first stage (inter-emotion)
of control and fine-conditioning on the utterance-level prosodic factors
(i.e., prosodic factors) and word-level prominence (i.e., prominence) in
the second stage (intra-emotion) of control. To enable this two-stage
control, we extend the baseline Tacotron2 model [31] with a speech emo-
tion recognizer (SER) and a prosodic factor generator (PFG) model,
as shown in Fig. 2. The SER model estimates the emotion soft labels,
on which the TTS model is conditioned in the first stage of control,
and the PFG model generates prosodic factors and prominence, on
which is fine-conditioned in the second stage of control. We detail the
SER, PFG, and the proposed emotion-controllable TTS model in the
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Figure 2: The architecture of the proposed emotion-controllable TTS model

following sections.

3.1 SER and PFG models

3.1.1 SER model

The SER model estimates emotion soft labels which are used for the
first stage of control. The model takes multi-modal features consisting
of prosodic factors, prominence, and textual features, as input. We
utilize the multi-modal features as input because of their better perfor-
mance on emotion estimation than unimodal features, which has been
demonstrated in previous research [29]. In addition, the emotion soft
labels estimated by multi-modal features in the SER model can be ef-
ficiently used to generate prosodic factors and prominence in the PFG
model, which we will discuss later. The ground truth of prosodic fac-
tors, prominence, and textual features can be extracted by the following
approach.

Utterance-level prosodic factors extraction We extract pitch
and energy contours of speech at the frame level and calculate their
means, standard deviations (SD), and range as utterance-level prosodic
factors. The pitch contour is predicted using the pYIN algorithm [23],
and the energy contour is calculated by the root-mean-square value of
the magnitude of each frame. These three statistics of pitch and energy,
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Figure 3: The word-level prominence extraction by applying the CWT-LoMA with
a sum of signal contours of pitch, energy, and duration. The lines of maximum
amplitude (LoMA) are shown in black, while the strength of each line indicates the
word-level prominence which is shown in decimal numerical. The white lines are the
minimum amplitude which indicates the boundaries of words.

a total of 6-dimensional prosodic factors, are used to condition the
proposed TTS model because they are related to speech emotion [29].
Each of the extracted prosodic factors is normalized to the range from
0 to 1 by applying Min-Max normalization over the training dataset.

Word-level prominence extraction We extract word-level promi-
nence by using the lines of maximum amplitude (LoMA) in the con-
tinuous wavelet transform (CWT) of a sum of signal contours of pitch,
energy, and duration with weights [33]. The CWT of a composition
of pitch, energy, and duration contours can approximate human pro-
cessing of a complex signal relevant to prominence by resembling the
perceptual hierarchical structures (phoneme, syllable, word) related to
prosody. This ability is more difficult to achieve with traditional spec-
trograms. The LoMA [36] are lines that can identify and quantify
word-level prominence by connecting nearby peaks in the CWT of the
signal at different scales, as shown in Fig. 3. The strength of the line for
each word (decimal numerical in Fig. 3) is the word-level prominence
which is determined by the cumulative sum of scale values of the line
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with weights, shown as follows:

xprm = Ws(a0, ti0,0) + . . .+ log(j + 1)a−j/2Ws(a0a
j , tij ,j), (1)

where xprm is word-level prominence, a0 denotes the finest scale in
CWT, tij ,j is a time point where the local maxima occurred in the a0a

j

scale. Ws(a0a
j , tij ,j) denotes the CWT in tij ,j time point at a0a

j level
scale. From this formula, we can conclude that the higher levels of the
hierarchy are given more weight by the logarithmic term than the lower
levels.

To extract prominence, we first align speech and its corresponding
text at the word level by using the Montreal Forced Aligner (MFA) [24],
a text-speech alignment tool. Second, we extract the prominence of
each word to a scalar value by using a wavelet prosody toolkit which is
available here 1. The extracted word prominence indicates the degree
of emphasis, which is also related to speech emotion [13]. The promi-
nence is normalized to the range from 0 to 1 by applying the Min-Max
normalization over the training dataset.

Word-level textual feature extraction We extract word-level
textual features by applying the fastText [4], a word-level text embed-
ding model, to a text embedding. The text embedding is an L × M
tensor, where the L indicates the number of words in a sentence and
M is the embedding dimension. Similar to prosodic factors and promi-
nence, textual features are also related to speech emotion [29].

Multi-modal features We concatenate prosodic factors, promi-
nence, and text embedding as multi-modal features to predict emotion
soft labels. To do this, we extend prosodic factors xpsd from a 1 × 6
tensor to a word-length L× 6 tensor and concatenate it to prominence
xprm and text embedding xwrd along the L dimension. To avoid the
domination of text embedding, we upsample the prosodic factors and
prominence from 6 and 1 dimensions to 16 and 8 dimensions, respec-
tively. We denote this concatenation as Concatwrd, shown as follows:

xmul = Concatwrd(xpsd,xprm,xwrd). (2)

The SER model is a 2-layer LSTM model followed by a softmax
output layer. It estimates emotion soft labels p

(1)
emo, where superscript

1The wavelet prosody toolkit:link

https://github.com/asuni/wavelet_prosody_toolkit
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Figure 4: The SER and PFG models

1 indicates that it is used for the first stage of control. The emotion soft
labels are the posterior probabilities for predicting the emotion labels
yemo, conditional on multi-modal features xmul:

p(1)
emo = SER(xmul) = P (yemo|xmul). (3)

The SER architecture is shown on the left side of Fig. 4.
Training objective The SER model is trained by minimizing the

cross-entropy loss (LSER) between the groud-truth emotion labels and
estimated emotion soft labels:

LSER = −
N∑
i=1

C∑
c=1

yi,c log(pemoi,c), (4)

where yi,c is an emotion label indicator, assigned 0 or 1, indicating
whether the i-th utterance belongs to the c-th emotion (1) or not (0).
N and C are the total numbers of utterances and emotion categories,
respectively. pemoi,c is the estimated emotion soft label of the i-th
utterance for the c-th emotion.

3.1.2 PFG model

The PFG model generates basic-conditioning prosodic factors and promi-
nence on which the TTS model is conditioned, to synthesize speech
corresponding to a given emotion. The PFG model consists of an
utterance-level prosodic factor generator and a word-level prominence
generator.
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Utterance-level prosodic factor generator The utterance-level
prosodic factor generator PFGpsd generates basic-conditioning prosodic
factors x̂psd from a concatenation of text embedding xwrd and emotion
soft labels p

(1)
emo:

x̂psd = PFGpsd(xwrd,p
(1)
emo), (5)

where p
(1)
emo is the SER output in training and manually assigned in

inference.
The PFGpsd consists of a 2-layer LSTM network followed by a fully

connected (FC) layer and a sigmoid layer in sequence.
Word-level prominence generator Similarly, the word-level promi-

nence generator PFGprm generates basic-conditioning prominence x̂prm

from a concatenation of text embedding xwrd and emotion soft labels
p
(1)
emo:

x̂prm = PFGprm(xwrd,p
(1)
emo), (6)

where p
(1)
emo is also the SER output in training and manually assigned

in inference.
The PFGprm also consists of a 2-layer LSTM network followed by

an FC layer and a sigmoid layer in sequence.
The architectures of the PFGpsd and PFGprm models are shown in

the upper right and lower right of Fig. 4, respectively.
Training objective The PFGpsd and PFGprm models are jointly

optimized by minimizing the PFG loss LPFG which is calculated by
the sum of L2 loss of prosodic factors Lpsd and prominence Lprm. The
objective function is:

LPFG =

N∑
i=1

Lpsdi +

N∑
i=1

Lprmi
, (7)

where i indicates an utterance index and N is the total number of
utterances.

To increase the fit of the SER and PFG models, they are first
trained jointly by minimizing the sum of the SER and PFG losses
on an emotion-labeled dataset. The objective function is:

L(SER+PFG) = LSER + LPFG. (8)
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3.2 Emotion-controllable TTS Model

The emotion-controllable TTS model enables two-stage control by ex-
tending the baseline Tacotron2 model with the concatenated SER and
PFG models, as shown in Fig. 2. The SER model takes multi-modal
features as input and outputs emotion soft labels, which are fed into
the PFG model along with text embedding. The PFG model outputs
basic-conditioning prosodic factors and prominence, which are then fed
into the TTS decoder along with phoneme embedding from the TTS
encoder.

Because the basic-conditioning prosodic factors, prominence, and
phoneme embedding have different shapes, to concatenate them to-
gether, we extend prosodic factors and prominence to phoneme lengths
by simple duplication and alignment by the English grapheme-to-phoneme
conversion algorithm 2, respectively.

The proposed TTS model emoTTS is conditioned on the concate-
nated embeddings ĉcon to synthesize speech yspeech:

yspeech = emoTTS(ĉcon), (9)

where

ĉcon = Concatphn(ĉpsd, ĉprm,xphn), (10)

where Concatphn is a concatenation of phoneme-level conditioning of
prosodic factors ĉpsd, prominence ĉprm, and phoneme embedding xphn.

Specifically, ĉpsd includes two parts: basic-conditioning prosodic
factors x̂psd and fine-conditioning prosodic factors (i.e., prosodic fac-
tors biases or fine-conditioning biases) b

(2)
psd, where the superscript 2

indicates that they are used for the second stage of control, shown in
Eq. 11. We condition the TTS model on x̂psd to synthesize speech
with a given emotion. We can achieve this because the x̂psd is gener-
ated from emotion soft labels by the PFG model. We fine-condition the
TTS model on b

(2)
psd to enable a slight change of basic prosodic factors

to provide diversity.

ĉpsd = PFGpsd(xwrd,p
(1)
emo) + b

(2)
psd

= x̂psd + b
(2)
psd,

(11)

2The English grapheme-to-phoneme conversion package:link

https://pypi.org/project/g2p-en/#description
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where the PFGpsd is the utterance-level prosodic factor generator and
the xwrd is the word-level text embedding.

Similarly, the conditioning prominence ĉprm also comprises two
parts: basic-conditioning prominence x̂prm and fine-conditioning promi-
nence (i.e., prominence bias or fine-conditioning bias) b(2)prm and behaves
in the same way as the ĉpsd, shown in Eq. 12.

ĉprm = PFGprm(xwrd,p
(1)
emo) + b(2)prm

= x̂prm + b(2)prm,
(12)

where PFGprm is the word-level prominence generator.
According to Eq. 11 and Eq. 12, the proposed TTS model that is

conditioned on ĉpsd and ĉprm functionally enables the inter-emotion
control by applying emotion soft labels p

(1)
emo and the intra-emotion

control by fine-conditioning prosodic factors b(2)psd (or prominence b
(2)
prm),

respectively. It is worth noting that although the proposed model can
control both emotion and prosodic factors (or prominence), in real-
ity, we only need to condition our model on the pure prosodic factors
(or prominence). Such characteristics can efficiently avoid complicated
control over correlated emotion and prosodic factors (or prominence).

Training objective The proposed TTS model is optimized by min-
imizing the additive loss Lemo_TTS of LTacotron2 and LPFG:

Lemo_TTS = LTacotron2 + LPFG. (13)

In inference, the proposed two-stage control TTS model can syn-
thesize speech in the following ways:

1. Enabling only the first stage of control. Given emotion soft la-
bels, the proposed model can synthesize speech with a specified
emotion.

2. Enabling both the first and second stages of controls. Given emo-
tion soft labels and fine-conditioning prosodic factors or promi-
nence, the proposed model can synthesize specified emotional
speech with slightly changed prosodic factors or prominence.

4 Experimental Setup
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4.1 Data and Preprocessing

We first used the IEMOCAP dataset [5] to jointly train the SER and
PFG models. Then we trained our emotion-controllable TTS model
with the SER model frozen on the Blizzard Challenge 2013 (BC2013)
dataset [15].

IEMOCAP is a multimedia English conversation dataset contain-
ing speech, video, etc., performed by five male and five female speakers
with nine different emotions. The speech part includes 10,039 utter-
ances (about 12 hours) recorded with a sampling rate of 16,000 Hz.
Each utterance is annotated by an emotion label ranging from nine
emotions, including anger, happiness, excitement, sadness, frustration,
fear, surprise, other, and neutral state. To focus only on the significant
emotions, we utilized four emotion categories: angry (i.e., anger), sad
(i.e., sadness), neutral (i.e., neutral state), and happy (either happi-
ness or excitement). Specifically, we combined happiness and excite-
ment into one happy emotion, following Sahu et al.’s [29] method. The
speech labeled with these four emotions was then used to train the SER
to preprocess the BC2013 datasets.

BC2013 is an audiobook dataset containing 340 hours of speech
recorded by a professional female speaker in narrative and expressive
styles. BC2013 is a high-quality dataset encoded at a sampling rate of
22,050 Hz.

BC2013 preprocessing To efficiently train the proposed emotion-
controllable model, we preprocessed BC2013 to select a subset of the
dataset that includes a higher percentage of expressive speech than
the original one. In addition, we predicted emotion labels for each
utterance. The preprocessing consists of three steps:

1. Character utterance selection. First, we selected all utter-
ances spoken by characters in BC2013 because they were more
likely to contain expressive speech than others. The characters’
utterances were extracted by selecting the sentences enclosed in
single or double quotation marks in transcripts from the BC2013
dataset. This approach is similar to that of previous study [25].
To balance character and non-character utterances, we added all
utterances in Jane Eyre, Emma, A Little Princess, and Twenty
Thousand Leagues Under the Seas fictions to the extracted char-
acters’ utterances.
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2. Emotion soft labels estimation. Second, we estimated emo-
tion soft labels for the utterances obtained in step 1 using the
SER model pre-trained on the IEMOCAP dataset with the four
emotion categories.

3. Emotion category filter. Third, we conducted a simple listen-
ing test to filter out emotion categories that are incorrectly esti-
mated in step 2, which may result in unexpected emotion control.
The details of the listening test are provided in Appendix A.

Finally, we collected a total of 18,638 utterances (about 75 hours),
including 4,416 angry, 6,762 neutral, and 7,460 sad utterances. The
utterances in the happy category were dropped out because they did
not sound as happy in the listening test during step 3.

4.2 Model Architecture and Training

4.2.1 Model Architecture

The SER model consisted of a 3-layer LSTM network with 128 hidden
units and a 128×3 fully connected (FC) layer, followed by a softmax ac-
tivation. The SER model took 324-dimensional multi-modal features,
a combination of 300-dimensional text embedding, 16-dimensional up-
sampled utterance-level prosodic factors from the original 6-dimensional,
and 8-dimensional unsampled word-level prominence from the original
1-dimensional as input and output the 3-dimensional emotion soft la-
bels (angry, neutral, and sad).

The PFG model consisted of an utterance-level prosodic factor gen-
erator and a word-level prominence generator. The architecture of the
former consisted of a 2-layer LSTM network with 128 hidden units and
128× 6 FC layers followed by a sigmoid activation function. The input
was a 303-dimensional joint vector concatenated by a 300-dimensional
text embedding and 3-dimensional emotion soft labels. The output was
6-dimensional predicted prosodic factors. Similarly, the latter model in-
cluded a 2-layer LSTM network with 128 hidden units and a 128 × 1
FC layer followed by a sigmoid activation function. It also took a 303-
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dimensional joint vector as input and output a 1-dimensional promi-
nence.

The backbone Tacotron2 consisted of an encoder network that con-
verted phoneme embedding into a hidden text representation and a de-
coder network that predicted mel-spectrograms from hidden text and
prosodic representations.

Specifically, the encoder network consisted of 3-layer 1-dimensional
convolutions with 512 filters and a 5 × 1 window size. A phoneme
embedding represented by a 512-dimensional vector was passed through
the encoder network whose output was a hidden text representation.

The decoder network included an autoregressive recurrent neural
network, which consisted of a 2-layer LSTM with 1,024 hidden units,
location-sensitive attention [7], which is an extension of additive at-
tention [3], a pre-net consisted of a 2-layer FC network with 256 hid-
den units, and a post-net consisted of a 5-layer 1-dimensional con-
volutional network with 512 filters. In addition, we also introduced a
psd-net which converted prosodic factors and prominence into a hidden
prosodic presentation. A hidden text representation, the encoder out-
put, was consumed by location-sensitive attention which summarized
weighted hidden text representations into a 512-dimensional context
vector. A previous mel-spectrogram prediction was passed through
the pre-net whose output was a 256-dimensional vector, while prosodic
factors and prominence were passed through the psd-net whose output
was a 32-dimensional vector. We applied dropout with 0.5 dropout
rate to the output of the pre-net for better audio quality in both the
training and inference stages, following [31]. The context vector of at-
tention output and the psd-net output were concatenated and passed
into the autoregressive recurrent neural network which predicted the
mel-spectrogram one frame at a time. The predicted mel-spectrogram
was then fed into a post-net to improve the overall reconstruction.

The ground-truth mel-spectrograms were calculated by a short-time
Fourier transform (STFT) on a window size of 2,048 samples and a
hop length of 512 samples with a Hann window function. We then
transformed the STFT magnitude to the mel scale by using an 80-
channel mel filterbank spanning from 80 Hz to 7,600 Hz.

We utilized a Parallel WaveGAN model [41] as a vocoder to generate
waveform samples conditioned on the predicted mel-spectrograms. The
Parallel WaveGAN model was pre-trained on the LJSpeech dataset [11]
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and is accessible online3.

4.2.2 Training

We extracted prosodic factors and prominence of the IEMOCAP and
BC2013 datasets using the approach described in Section 3. In the
experiment, we removed 1, 718 samples that could not be aligned cor-
rectly by the MFA.

The training process consisted of the SER and PFG joint train-
ing and the emotion-controllable TTS training. The former trained
the SER and PFG models on the IEMOCAP datasets by optimizing
the LSER and LPFG in a supervised manner. We used the Adam op-
timizer [16] with a learning rate of 0.001 and 200 epochs. The latter
trained the emotion-controllable TTS model by optimizing the LPFG

and LTacotron2 with the SER frozen and the PFG fine-tuned. We also
used the Adam optimizer [16], and the 0.001 learning rate started de-
caying exponentially to 0.00001 after 50,000 iterations.

5 Evaluation

We conducted two principal evaluations: 1) a preliminary evaluation
of the SER and PFG models and 2) a controllability evaluation of the
proposed emotion-controllable TTS. The preliminary evaluation of the
proposed SER and PFG models was performed by comparing them with
traditional SER [29] and PFG [33] models. In the latter evaluation,
we first evaluated the emotion controllability of the proposed model
when conditioning on emotion soft labels, and then we evaluated the
linear controllability of utterance-level prosodic factors and word-level
prominence when fine-conditioning them with respective biases.

5.1 SER and PFG Performance

We jointly trained the proposed SER and PFG models on the IEMO-
CAP dataset and further fine-tuned the trained PFG model on the
BC2013 dataset while freezing the SER model. To evaluate the SER
and PFG models, we randomly selected 80% of the IEMOCAP and

3The pre-trained Parallel WaveGAN model:link

https://drive.google.com/drive/folders/1XRn3s_wzPF2fdfGshLwuvNHrbgD0hqVS
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BC2013 datasets as training datasets and evaluated them on the re-
maining 20% of the datasets.

5.1.1 SER performance

We evaluated the SER model on the testing part of the IEMOCAP and
emotion-labeled part of BC2013 datasets (described in Appendix A) on
precision, recall, and F1-score. We conducted an ablation study on the
effectiveness of each of the multi-modal features in predicting three
emotions (angry, neutral, and sad) by training the SER models with
only text, text, and prosodic factors [29], and multi-modal features of all
three input. The results showed that our SER model with multi-modal
features of text, prosodic factors, and prominence improved F1 scores
by 7.8%, 1.3% on the IEMOCAP, and 5.7%, 2.0% on BC2013 datasets
when compared with the other two benchmark models, respectively.
The details of the results are shown in Table 3 in Appendix B. We
argue that such results indicate the effectiveness of appending prosodic
factors and prominence to text input for emotion prediction.

5.1.2 PFG performance

We also evaluated the PFG models on the testing part of the BC2013
dataset in terms of L2 loss. We utilized the conventional prosodic fac-
tor generator [26] and prominence generator [34] as our benchmark
models, both of which only utilize text as input. The results indicated
that our PFG models (both prosodic factor and prominence generators)
outperformed the corresponding benchmark models by 0.008 (12.9%)
and 0.005 (21.7%) on the absolute (relative) decrease of L2 loss, respec-
tively, as shown in Table 4 in Appendix B. Thus, we can conclude that
emotion soft labels, in addition to text, also contributed to predicting
both prosodic factors and prominence.

In summary, our proposed SER model with extra prominence input
and the PFG model with extra emotion soft labels input outperformed
the conventional SER and PFG models in predicting emotion soft la-
bels, and prosodic factors/prominence, respectively.
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Figure 5: Emotion-distinguishable performance of synthesized speech

5.2 Emotion-controllable TTS performance

5.2.1 Controllability of emotion soft labels (first stage of control)

We first evaluated the emotion controllability of our proposed model
when conditioning on emotion soft labels during the first stage (inter-
emotion) of control. To obtain the perceived emotion of synthesized
speech, we conducted a preference test in which each participant was
required to choose angry, neutral, and sad speech, respectively, from a
set of three synthesized speech with angry, neutral, and sad emotions.
We synthesized 10 utterances for each emotion (angry, neutral, and
sad) as test speech from randomly selected sentences in the BC2013
dataset by conditioning corresponding emotion soft labels to 1.0. We
applied the emotion soft label to 1.0 because the speech with the high-
est posterior probability has shown better representativeness than the
others [6]. This test was conducted on the Amazon Mechanical Turk [8]
with 50 participants and 10 sets of speech for each participant. The
performance of emotion controllability was evaluated by the accuracy,
precision, recall, and F1-score which indicates the distinguishability
for each emotion category. The results demonstrated that the accu-
racy, precision, recall, and F1-score were 51%, 52%, 50%, and 51% on
average of three emotions, as shown in Fig. 5. Specifically, the accu-
racy of angry speech was 60% which was relatively higher than other
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Table 1: Pearson correlation coefficient between fine-conditioning and measured
prosody factor biases for three emotions

Angry Neutral Sad

Prosodic
factors PCC p-value PCC p-value PCC p-value

Energy
mean 0.99 2.87e-07 0.98 7.10e-07 0.99 1.69e-07
Energy
range 0.98 8.23e-05 0.99 1.21e-05 0.97 2.43e-04
Energy
SD 0.97 1.99e-05 0.96 3.70e-04 0.98 2.16e-05
Pitch
mean 0.96 4.69e-05 0.99 6.82e-06 0.98 1.90e-05
Pitch
range 0.83 1.83e-02 0.87 5.07e-03 0.91 1.74e-03
Pitch
SD 0.89 7.10e-03 0.91 3.82e-03 0.97 2.73e-04

emotions. The accuracy of our model is lower than that of the con-
ventional model (80%) [17]. We suggest the reason is two-fold. First,
the conventional model was trained on an annotated private dataset
recorded with good emotion distinguishability, while our model was
trained on an unannotated narrative-style BC2013 dataset. Second,
we made a trade-off between the accuracy of emotion distinguishabil-
ity and the fine-conditioning ability of prosodic factors and prominence.
Nevertheless, we still argue that our model provides good emotion con-
trollability. Furthermore, the emotion-distinguishable accuracy of our
model can be improved by training on more emotional speech, as the
conventional model did.

5.2.2 Linear controllability of utterance-level prosodic factors (second stage
of control)

We evaluated the linear controllability of our proposed model by fine-
conditioning on prosodic factors during the second stage (intra-emotion)
of control. We expected to slightly change prosodic factors of synthe-
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Figure 6: Correlation between fine-conditioning and observed biases when fine-
conditioning on utterance-level prosodic factors for three emotions

sized speech to “biases” linearly relative to the fine-conditioning bi-
ases. To measure this linear relation, we defined a linear controllability
score by utilizing the Pearson Correlation Coefficient (PCC) between
the fine-conditioning biases and measured biases for each prosodic fac-
tor. This can be expressed as PCC(b

(2)
psd, b

′
psd), where b

(2)
psd is the fine-

conditioning biases and b′psd is the measured biases indicating the dif-
ference in prosodic factors between the speech synthesized with fine-
conditioning biases and without fine-conditioning biases (fine-conditioning
bias = 0), as shown in Eq. 14:

b′psd = PSD(emoTTS(x̂psd + b
(2)
psd))

− PSD(emoTTS(x̂psd)).
(14)

PSD indicates the prosodic factor extraction, and x̂psd denotes basic-
conditioning prosodic factors, which were discussed in Section 3.1.2.

To synthesize the evaluation speech, we input 50 sentences selected
from the BC2013 dataset, and for each sentence, we fine-conditioned
on six prosodic factors with seven biases for each, ranging from −0.3
to 0.3 with a 0.1 step, for angry (angry = 1.0), neutral (neutral = 1.0),
and sad emotion (sad = 1.0). In total, we synthesized 6,300 speech
samples.
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Figure 7: MOS scores of speech synthesized by the conventional model [26] and the
proposed model when conditioning on angry/neutral/sad and fine-conditioning on
prosodic factors (left) and prominence (right)

We calculated PCC(b
(2)
psd, b

′
psd), as shown in Table 1, and visual-

ized the correlation between b
(2)
psd and b′psd on angry, neutral, and sad

evaluation speech, as shown in Fig. 6.
From the results, we can conclude that:

1. We can linearly fine-condition our model on the six prosodic fac-
tors for angry, neutral, and sad emotions, respectively. With the
p-value (statistical significance) <0.05, the average PCC score
for angry (0.93), neutral (0.95), sad (0.97), and overall (0.95)
emotions showed strong linear controllability4 on the proposed
prosodic factors.

2. Compared with the prosodic factors of energy and pitch range/SD,
the correlation lines (the blue lines) of the energy and pitch mean,
as shown in Fig. 6, exhibit higher controlling slopes and are closer
to the ideal controlling lines (the red dotted lines).

3. The linear controllability of our model on the prosodic factors
was fairly comparable with the conventional method [26]. In ad-
dition, our model can also be conditioned on emotion, while the
conventional method cannot.

4The definition of strong, moderate, and weak linear relationships are 1.0 ≥
PCC ≥ 0.6, 0.6 > PCC ≥ 0.4, 0.4 > PCC ≥ 0.0 while p-value < 0.05 [10]
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Table 2: Pearson correlation coefficient between fine-conditioning and measured
prominence biases for three emotions

Angry Neutral Sad

Prominence PCC p-value PCC p-value PCC p-value

NOUN 0.88 8.01e-3 0.95 1.35e-4 0.98 3.44e-4
VERB 0.96 4.81e-4 0.98 4.49e-3 0.96 4.53e-4
ADJ 0.95 8.45e-4 0.95 4.39e-1 0.94 1.32e-3
ADV 0.98 6.89e-5 0.97 4.02e-2 0.96 3.95e-4

We also evaluated the quality of speech which was synthesized by
fine-conditioning on prosodic factors biases for angry, neutral, and sad
emotions. In detail, we synthesized speech samples for evaluation by
conditioning on angry, neutral, and sad emotions and fine-conditioning
on −0.3, 0, and 0.3 biases of each of six prosodic factors from 10 sen-
tences randomly selected from the BC2013 test dataset. Finally, we
collected 540 speech samples where each of 10 sentences had 54 vari-
ations (3 emotions × 6 prosodic factors × 3 biases). We conducted a
mean opinion score (MOS) test on the Amazon Mechanical Turk with
50 participants, each of whom was given 54 speech sample variations of
the same sentence and required to choose speech quality for each speech
in five stages (1: very bad, 5: very good). The result is shown on the
left side of Fig. 7. From the result, We can conclude that our model
can condition on both emotion and prosodic factors without degrading
audio quality (MOS = 3.5), which is comparable to the conventional
method that can only condition on prosodic factors.

5.2.3 Linear controllability of word-level prominence (second stage of con-
trol)

We also evaluated the linear controllability of our proposed model
by fine-conditioning on prominence during the second stage (intra-
emotion) of control. Similarly, we defined a linear controllability score
using the PCC between the fine-conditioning biases and measured bi-
ases for prominence. This can be represented by PCC(bprm, b

′
prm),

where bprm is fine-conditioning biases and b′prm is measured biases in-
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Figure 8: Correlation between fine-conditioning and observed biases when fine-
conditioning on the prominence of NOUN, VERB, ADJ, and ADV words for three
emotions

dicating the difference in prominence between the synthesized speech
with fine-conditioning bias and without bias (fine-conditioning bias =
0), as shown in Eq. 15:

b′prm = PRM(emoTTS(x̂prm + b(2)prm))

− PRM(emoTTS(x̂prm)).
(15)

PRM indicates the prominence measurement and x̂prm denotes basic-
conditioning prominence, which were discussed in Section 3.1.2.

In the experiment, we found that word-level prominence was dis-
tributed differently depending on the part of speech in the training
dataset, as shown in Fig. 12 in Appendix D. The prominence of NOUN,
VERB, ADJ, and ADV words were distributed close to a normal dis-
tribution; however, the prominence of other parts of speech was not.
Because non-normally distributed parts of speech theoretically cannot
be controlled linearly, we only experiment on the NOUN, VERB, ADJ,
and ADV words. To synthesize the evaluation speech, we also input 50
sentences selected from the BC2013 dataset, and for each sentence, we
fine-conditioned on the prominence of NOUN, VERB, ADJ, and ADV
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words, respectively, with seven biases for each, ranging from −0.3 to
0.3 with a 0.1 step, for angry (angry = 1.0), neutral (neutral = 1.0),
and sad emotion (sad = 1.0). In total, we synthesized 2, 100 speech
samples.

We calculated PCC(bprm, b
′
prm) based on the basis of both neutral

and angry emotions, as shown in Table 2, and visualized the correlation
between bprm and b′prm on the angry, neutral, and sad emotions, as
shown in Fig. 8.

From the results, we can conclude that:

1. Our model can linearly fine-condition on the prominence of cer-
tain parts of speech including NOUN, VERB, ADJ, and ADV
whose prominence is distributed close to the normal distribution
in the training dataset. With p-value < 0.05, the average PCC
score of angry (0.93), neutral (0.97), sad (0.96), and overall (0.95)
emotions showed strong linear controllability on the prominence
of the NOUN, VERB, ADJ, and ADV words.

2. For the parts of speech aside from NOUN, VERB, ADJ, and ADV
words, they may also be linearly fine-controlled if the training
dataset is extended with a new one whose prominence is close to
the normal distribution.

We also visualized the prominence contours of utterances, synthe-
sized by conditioning on the angry, neutral, and sad emotions and fine-
conditioning prominence on the NOUN, VERB, ADJ, and ADV words
with three biases (−0.3, 0, and 0.3) from the same sentence. The sen-
tence we chose should contain NOUN, VERB, ADJ, and ADV words at
the same time. As shown in Fig. 9, the prominence of fine-conditioned
words increased (or decreased) when the conditioning bias increased (or
decreased). For example, by fine-conditioning on the NOUN “hotel”,
the prominence increased from 1.0 to 1.4 (when bias is 0.3) and de-
creased from 1.0 to 0.6 (when bias is −0.3) for the angry emotion. On
the other side, the prominence of words that were not fine-conditioned
(e.g., “They”) was also slightly changed in the experiment. Such a phe-
nomenon occurred because we enabled the dropout of pre-net even in
the inference stage for better audio quality which brings a slight vari-
ation to mel-spectrogram, as described in Section 4.2. Nevertheless,
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Figure 9: Prominence contours of an utterance synthesized from a given sample
sentence by conditioning on the angry, neutral, and sad emotions (first stage of
control) and fine-conditioning prominence on NOUN, VERB, ADJ, and ADV words
with three biases (−0.3, 0, and 0.3) for each emotion (second stage of control).
The sample sentence is “They forcefully keep them at a black hotel”. The NOUN,
VERB, ADJ, and ADV words correspond to “hotel”, “keep”, “black”, and “forcefully”,
respectively.

such slight variation did not affect the prominence controllability of
our model.

To further investigate how the energy and pitch contours changed
when conditioning on prominence, we also drew the energy and pitch
contours when conditioning on different parts of speech for the angry
emotion, as shown in Fig. 10. We can conclude that the energy and
pitch of the fine-conditioned word increased (or decreased) simultane-
ously when the bias was increased to 0.3 (or decreased to −0.3). In par-
ticular, the pitch was more significantly affected than the energy. We
interpret such phenomenon as follows: changing the pitch can achieve
the desired prominence shift with minimal mel-spectrogram changes
compared to changing energy or duration.

We also evaluated the quality of speech which is synthesized by
fine-conditioning on the prominence of NOUN, VERB, ADJ, and ADV
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Figure 10: Energy and pitch contours of a synthesized utterance when fine-
conditioning prominence on NOUN, VERB, ADJ, and ADV words with three biases
(−0.3, 0, and 0.3) for angry emotion. The interval (black dashed line) of the fine-
conditioned word was computed by the average intervals of corresponding words
fine-conditioned with three biases.

words for angry, neutral, and sad emotions. In detail, we synthesized
speech samples for evaluation by conditioning on angry, neutral, and
sad emotions and fine-conditioning on −0.3, 0, and 0.3 biases of the
prominence of NOUN, VERB, ADJ, and ADV words from 10 sentences
randomly selected from the BC2013 test dataset. Finally, we collected
360 speech samples where each of the 10 sentences had 36 variations
(3 emotions × 4 parts of speech × 3 biases). We conducted a mean
opinion score (MOS) test on the Amazon Mechanical Turk with 50
participants, each of whom was given 36 speech samples and required
to choose speech quality for each speech in five stages (1: very bad, 5:
very good). The result is shown on the right side of Fig. 7. From this
result, we can conclude that our model can fine-condition the promi-
nence of NOUN, VERB, ADJ, and ADV words for these three emotions
without degrading audio quality (MOS = 3.9), which is comparable to
the method that can only condition prominence. The sample audio is
accessible here5.

5Sample audio:link

https://undeadyequ.github.io/luo_blog/2023/03/14/sample_audio_emoTTS.html
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6 Conclusion and Discussion

We proposed a two-stage emotion-controllable text-to-speech (TTS)
model that can condition on inter-emotion (e.g., angry) in the first
stage and fine-condition on intra-emotion including both the utterance-
level prosodic factors (e.g., energy mean) and word-level prominence in
the second stage of control. Due to the two-stage design, our model
enables inter-emotion controllability and increases intra-emotion diver-
sity. The results show that we can 1) condition the proposed model
on emotion and synthesize adequately emotion-distinguishable speech
(emotion-distinguishable score = 51%), 2) linearly fine-condition the
proposed model on the utterance-level prosodic factors for angry, neu-
tral, and sad emotions, respectively, 3) linearly fine-condition on the
prominence of NOUN, VERB, ADJ, and ADV words for the angry,
neutral and sad emotions, and finally 4) synthesize speech with audio
quality (MOS = 3.5) when fine-conditioning on prosodic factors and
MOS = 3.9 when fine-conditioning on prominence) comparable to that
of the conventional methods. Although the emotion-distinguishable
score was slightly lower (= 51%) due to the usage of the narrative-
style BC2013 dataset, the results are still promising. The emotion-
distinguishability score may be further improved by using more emo-
tional speech datasets.

In addition to the emotion-distinguishable score, other areas to be
improved include emotion strength controllability and the linear con-
trollability of word-level prominence, especially on the parts of speech
other than NOUN, VERB, ADJ, and ADV. More generally, we can
imagine that the two-stage control approach can be utilized in other
domains, such as controllable image synthesis.

Acknowledgements: This work was supported by JST, Moon-
shot R&D Grant Number JPMJMS2011 (for experiments), and JSPS
KAKENHI 21H05054, 19H01116, 21H04900 (for basic technique).

A Appendix A: Preference test for filtering out emotion categories

We conducted a simple listening preference test for selecting the speech
whose annotated emotion is consistent with the estimated one. This
listening preference test required three evaluators to annotate 100 ran-
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Table 3: Performance of conventional and proposed SER models on the evaluation
part of IEMOCAP and the preprocessed BC2013 dataset (only the annotated part)
with three emotions (angry, neutral, sad). The conventional model utilized Text,
Text and PSD (prosodic factors), while the proposed SER model utilized Text, PSD,
and PRM (prominence) as input.

Dataset Input Precision Recall F1

IEMOCAP Text 0.551 0.562 0.554
Text + PSD [29] 0.621 0.618 0.619
Text+PSD+PRM 0.642 0.623 0.632

BC2013 Text 0.535 0.480 0.486
Text + PSD [29] 0.552 0.518 0.523
Text+PSD+PRM 0.562 0.536 0.543

domly selected utterances from each emotion category, for a total of
400 utterances (100 utterances × four emotions). An emotion anno-
tated more than two times is treated as the ground truth emotion of
the speech. Given the ground truth and estimation, we calculated the
estimation accuracy and filtered out the emotion categories of which
the accuracy is lower than 60%.

B Appendix B: Performance of SER and PFG models

B.1 SER performance

We conducted an ablation study on the effectiveness of different fea-
tures in predicting three emotions (angry, neutral, and sad) by training
the SER models with only text, text with prosodic factors [29], and
multi-modal features of text, prosodic factors, and prominence, respec-
tively. The SER and PFG models were jointly trained on the training
part (80%) of the IEMOCAP dataset. To evaluate the SER perfor-
mance on both the IEMOCAP and BC2013 datasets, we evaluated it
on the testing part (20%) of the IEMOCAP and the emotion-labeled
part of the preprocessed BC2013 datasets (described in Appendix A)
on precision, recall, and F1-score. As a result, the F1 scores of our SER
model trained with multi-modal features of text, prosodic factors, and
prominence input were improved by 7.8% and 1.3% on the IEMOCAP,
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Table 4: Performance of conventional and proposed PFG models (prosodic factor
generator and prominence generator) on the preprocessed BC2013 dataset. The
conventional model utilized text, while the proposed PFG model utilized text and
emotion soft labels as input. The L2 loss of utterance-level prosodic factors and
word-level prominence were calculated, respectively.

Model Input L2 loss

Prosodic factor generator Text [26] 0.062
Text+EmoSoftLabel 0.054

Prominence generator Text [34] 0.023
Text+EmoSoftLabel 0.018

5.7% and 2.0% on BC2013 datasets when compared with the other two
benchmark models [29], respectively. The results are shown in Table 3.

B.2 PFG performance

We fine-tuned the PFG model with the SER model frozen when train-
ing the proposed emotion-controllable TTS model on the training part
of the BC2013 dataset and separately evaluated the prosodic factor
generator and prominence generator of our PFG model on the testing
part (20%) of the BC2013 dataset using the L2 loss. We compared
our model with the PFG model without emotion soft label as input,
followed by previous methods [26, 34]. The results are shown in Table 4.

C Appendix C: Prosodic factor distribution of angry, neutral, and
sad speech

in the training part of the BC2013 dataset We visualized the distribu-
tion of six prosodic factors, including the mean, SD, and the range of
energy and pitch contours, for angry, neutral, and sad speech in the
training part of the BC2013 dataset. The results are shown in Fig. 11.
The results demonstrated that the prominence of NOUN, VERB, ADJ,
and ADV words was distributed close to normal distribution, while the
prominence of ADP, AUX, PRON, PROPN, and INTJ was not.
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Figure 11: Prosodic factors distribution on six prosodic factors for three emotions
(left: angry, center: neutral, right: sad)
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Figure 12: Prominence distribution on different parts of speech for three emotions
(left: angry, center: neutral, right: sad)

D Appendix D: Prominence distribution of angry, neutral, and sad
speech in the training part of the BC2013 dataset

We visualized the distribution of word-level prominence on NOUN,
VERB, ADJ, and ADV for angry, neutral, and sad speech in the train-
ing part of the BC2013 dataset. The results are shown in Fig. 12.
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